MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtlim Structured version   Visualization version   GIF version

Theorem chpchtlim 25168
Description: The ψ and θ functions are asymptotic to each other, so is sufficient to prove either θ(𝑥) / 𝑥𝑟 1 or ψ(𝑥) / 𝑥𝑟 1 to establish the PNT. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpchtlim (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1

Proof of Theorem chpchtlim
StepHypRef Expression
1 1red 10055 . . 3 (⊤ → 1 ∈ ℝ)
2 1red 10055 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ∈ ℝ)
3 2re 11090 . . . . . . . . . . 11 2 ∈ ℝ
4 elicopnf 12269 . . . . . . . . . . 11 (2 ∈ ℝ → (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥)))
53, 4ax-mp 5 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 2 ≤ 𝑥))
65simplbi 476 . . . . . . . . 9 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ)
76adantl 482 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ)
8 0red 10041 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 ∈ ℝ)
93a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ∈ ℝ)
10 2pos 11112 . . . . . . . . . . . . 13 0 < 2
1110a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 0 < 2)
125simprbi 480 . . . . . . . . . . . 12 (𝑥 ∈ (2[,)+∞) → 2 ≤ 𝑥)
138, 9, 6, 11, 12ltletrd 10197 . . . . . . . . . . 11 (𝑥 ∈ (2[,)+∞) → 0 < 𝑥)
146, 13elrpd 11869 . . . . . . . . . 10 (𝑥 ∈ (2[,)+∞) → 𝑥 ∈ ℝ+)
1514adantl 482 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℝ+)
1615rpge0d 11876 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 0 ≤ 𝑥)
177, 16resqrtcld 14156 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ)
1815relogcld 24369 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℝ)
1917, 18remulcld 10070 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℝ)
2012adantl 482 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ≤ 𝑥)
21 chtrpcl 24901 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 2 ≤ 𝑥) → (θ‘𝑥) ∈ ℝ+)
227, 20, 21syl2anc 693 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ+)
2319, 22rerpdivcld 11903 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ)
246ssriv 3607 . . . . . 6 (2[,)+∞) ⊆ ℝ
251recnd 10068 . . . . . 6 (⊤ → 1 ∈ ℂ)
26 rlimconst 14275 . . . . . 6 (((2[,)+∞) ⊆ ℝ ∧ 1 ∈ ℂ) → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
2724, 25, 26sylancr 695 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ 1) ⇝𝑟 1)
28 ovexd 6680 . . . . . . . 8 (⊤ → (2[,)+∞) ∈ V)
297, 22rerpdivcld 11903 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥 / (θ‘𝑥)) ∈ ℝ)
30 ovexd 6680 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / 𝑥) ∈ V)
31 eqidd 2623 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))))
327recnd 10068 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ∈ ℂ)
33 cxpsqrt 24449 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3432, 33syl 17 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (𝑥𝑐(1 / 2)) = (√‘𝑥))
3534oveq2d 6666 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = ((log‘𝑥) / (√‘𝑥)))
3618recnd 10068 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (log‘𝑥) ∈ ℂ)
3715rpsqrtcld 14150 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (√‘𝑥) ∈ ℝ+)
3837rpcnne0d 11881 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0))
39 divcan5 10727 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0) ∧ ((√‘𝑥) ∈ ℂ ∧ (√‘𝑥) ≠ 0)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
4036, 38, 38, 39syl3anc 1326 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = ((log‘𝑥) / (√‘𝑥)))
41 remsqsqrt 13997 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
427, 16, 41syl2anc 693 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (√‘𝑥)) = 𝑥)
4342oveq2d 6666 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((√‘𝑥) · (log‘𝑥)) / ((√‘𝑥) · (√‘𝑥))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4435, 40, 433eqtr2d 2662 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((log‘𝑥) / (𝑥𝑐(1 / 2))) = (((√‘𝑥) · (log‘𝑥)) / 𝑥))
4544mpteq2dva 4744 . . . . . . . 8 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / 𝑥)))
4628, 29, 30, 31, 45offval2 6914 . . . . . . 7 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))))
4715rpne0d 11877 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 𝑥 ≠ 0)
4822rpcnne0d 11881 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0))
4919recnd 10068 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((√‘𝑥) · (log‘𝑥)) ∈ ℂ)
50 dmdcan 10735 . . . . . . . . 9 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5132, 47, 48, 49, 50syl211anc 1332 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥)) = (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))
5251mpteq2dva 4744 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((𝑥 / (θ‘𝑥)) · (((√‘𝑥) · (log‘𝑥)) / 𝑥))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
5346, 52eqtrd 2656 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) = (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
54 chto1lb 25167 . . . . . . 7 (𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1)
5514ssriv 3607 . . . . . . . . 9 (2[,)+∞) ⊆ ℝ+
5655a1i 11 . . . . . . . 8 (⊤ → (2[,)+∞) ⊆ ℝ+)
57 1rp 11836 . . . . . . . . . . 11 1 ∈ ℝ+
58 rphalfcl 11858 . . . . . . . . . . 11 (1 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
5957, 58ax-mp 5 . . . . . . . . . 10 (1 / 2) ∈ ℝ+
60 cxploglim 24704 . . . . . . . . . 10 ((1 / 2) ∈ ℝ+ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6159, 60ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0
6261a1i 11 . . . . . . . 8 (⊤ → (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
6356, 62rlimres2 14292 . . . . . . 7 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0)
64 o1rlimmul 14349 . . . . . . 7 (((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∈ 𝑂(1) ∧ (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2)))) ⇝𝑟 0) → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6554, 63, 64sylancr 695 . . . . . 6 (⊤ → ((𝑥 ∈ (2[,)+∞) ↦ (𝑥 / (θ‘𝑥))) ∘𝑓 · (𝑥 ∈ (2[,)+∞) ↦ ((log‘𝑥) / (𝑥𝑐(1 / 2))))) ⇝𝑟 0)
6653, 65eqbrtrrd 4677 . . . . 5 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ⇝𝑟 0)
672, 23, 27, 66rlimadd 14373 . . . 4 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 (1 + 0))
68 1p0e1 11133 . . . 4 (1 + 0) = 1
6967, 68syl6breq 4694 . . 3 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)))) ⇝𝑟 1)
70 1re 10039 . . . 4 1 ∈ ℝ
71 readdcl 10019 . . . 4 ((1 ∈ ℝ ∧ (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥)) ∈ ℝ) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
7270, 23, 71sylancr 695 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) ∈ ℝ)
73 chpcl 24850 . . . . 5 (𝑥 ∈ ℝ → (ψ‘𝑥) ∈ ℝ)
747, 73syl 17 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ∈ ℝ)
7574, 22rerpdivcld 11903 . . 3 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ∈ ℝ)
76 chtcl 24835 . . . . . . . 8 (𝑥 ∈ ℝ → (θ‘𝑥) ∈ ℝ)
777, 76syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℝ)
7877, 19readdcld 10069 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) ∈ ℝ)
793a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 2 ∈ ℝ)
80 1le2 11241 . . . . . . . . 9 1 ≤ 2
8180a1i 11 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 2)
822, 79, 7, 81, 20letrd 10194 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ 𝑥)
83 chpub 24945 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 1 ≤ 𝑥) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
847, 82, 83syl2anc 693 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (ψ‘𝑥) ≤ ((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))))
8574, 78, 22, 84lediv1dd 11930 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)))
8622rpcnd 11874 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ∈ ℂ)
87 divdir 10710 . . . . . . 7 (((θ‘𝑥) ∈ ℂ ∧ ((√‘𝑥) · (log‘𝑥)) ∈ ℂ ∧ ((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
8886, 49, 48, 87syl3anc 1326 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
89 divid 10714 . . . . . . . 8 (((θ‘𝑥) ∈ ℂ ∧ (θ‘𝑥) ≠ 0) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9048, 89syl 17 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((θ‘𝑥) / (θ‘𝑥)) = 1)
9190oveq1d 6665 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) / (θ‘𝑥)) + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9288, 91eqtrd 2656 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (((θ‘𝑥) + ((√‘𝑥) · (log‘𝑥))) / (θ‘𝑥)) = (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9385, 92breqtrd 4679 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9493adantrr 753 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → ((ψ‘𝑥) / (θ‘𝑥)) ≤ (1 + (((√‘𝑥) · (log‘𝑥)) / (θ‘𝑥))))
9586mulid2d 10058 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) = (θ‘𝑥))
96 chtlepsi 24931 . . . . . . 7 (𝑥 ∈ ℝ → (θ‘𝑥) ≤ (ψ‘𝑥))
977, 96syl 17 . . . . . 6 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (θ‘𝑥) ≤ (ψ‘𝑥))
9895, 97eqbrtrd 4675 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → (1 · (θ‘𝑥)) ≤ (ψ‘𝑥))
992, 74, 22lemuldivd 11921 . . . . 5 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → ((1 · (θ‘𝑥)) ≤ (ψ‘𝑥) ↔ 1 ≤ ((ψ‘𝑥) / (θ‘𝑥))))
10098, 99mpbid 222 . . . 4 ((⊤ ∧ 𝑥 ∈ (2[,)+∞)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
101100adantrr 753 . . 3 ((⊤ ∧ (𝑥 ∈ (2[,)+∞) ∧ 1 ≤ 𝑥)) → 1 ≤ ((ψ‘𝑥) / (θ‘𝑥)))
1021, 1, 69, 72, 75, 94, 101rlimsqz2 14381 . 2 (⊤ → (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1)
103102trud 1493 1 (𝑥 ∈ (2[,)+∞) ↦ ((ψ‘𝑥) / (θ‘𝑥))) ⇝𝑟 1
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wtru 1484  wcel 1990  wne 2794  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  𝑓 cof 6895  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075   / cdiv 10684  2c2 11070  +crp 11832  [,)cico 12177  csqrt 13973  𝑟 crli 14216  𝑂(1)co1 14217  logclog 24301  𝑐ccxp 24302  θccht 24817  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-o1 14221  df-lo1 14222  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-cxp 24304  df-cht 24823  df-vma 24824  df-chp 24825  df-ppi 24826
This theorem is referenced by:  chpo1ub  25169  pnt2  25302
  Copyright terms: Public domain W3C validator