Proof of Theorem abelthlem7
| Step | Hyp | Ref
| Expression |
| 1 | | abelth.1 |
. . . . 5
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 2 | | abelth.2 |
. . . . 5
⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝
) |
| 3 | | abelth.3 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 4 | | abelth.4 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑀) |
| 5 | | abelth.5 |
. . . . 5
⊢ 𝑆 = {𝑧 ∈ ℂ ∣ (abs‘(1 −
𝑧)) ≤ (𝑀 · (1 − (abs‘𝑧)))} |
| 6 | | abelth.6 |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ Σ𝑛 ∈ ℕ0 ((𝐴‘𝑛) · (𝑥↑𝑛))) |
| 7 | 1, 2, 3, 4, 5, 6 | abelthlem4 24188 |
. . . 4
⊢ (𝜑 → 𝐹:𝑆⟶ℂ) |
| 8 | | abelthlem6.1 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ (𝑆 ∖ {1})) |
| 9 | 8 | eldifad 3586 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| 10 | 7, 9 | ffvelrnd 6360 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) ∈ ℂ) |
| 11 | 10 | abscld 14175 |
. 2
⊢ (𝜑 → (abs‘(𝐹‘𝑋)) ∈ ℝ) |
| 12 | | ax-1cn 9994 |
. . . . . 6
⊢ 1 ∈
ℂ |
| 13 | | abelth.7 |
. . . . . . . 8
⊢ (𝜑 → seq0( + , 𝐴) ⇝ 0) |
| 14 | 1, 2, 3, 4, 5, 6, 13, 8 | abelthlem7a 24191 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∈ ℂ ∧ (abs‘(1 −
𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))))) |
| 15 | 14 | simpld 475 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 16 | | subcl 10280 |
. . . . . 6
⊢ ((1
∈ ℂ ∧ 𝑋
∈ ℂ) → (1 − 𝑋) ∈ ℂ) |
| 17 | 12, 15, 16 | sylancr 695 |
. . . . 5
⊢ (𝜑 → (1 − 𝑋) ∈
ℂ) |
| 18 | | fzfid 12772 |
. . . . . 6
⊢ (𝜑 → (0...(𝑁 − 1)) ∈ Fin) |
| 19 | | elfznn0 12433 |
. . . . . . 7
⊢ (𝑛 ∈ (0...(𝑁 − 1)) → 𝑛 ∈ ℕ0) |
| 20 | | nn0uz 11722 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
| 21 | | 0zd 11389 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈
ℤ) |
| 22 | 1 | ffvelrnda 6359 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
| 23 | 20, 21, 22 | serf 12829 |
. . . . . . . . 9
⊢ (𝜑 → seq0( + , 𝐴):ℕ0⟶ℂ) |
| 24 | 23 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (seq0( +
, 𝐴)‘𝑛) ∈
ℂ) |
| 25 | | expcl 12878 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑋↑𝑛) ∈
ℂ) |
| 26 | 15, 25 | sylan 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑋↑𝑛) ∈ ℂ) |
| 27 | 24, 26 | mulcld 10060 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((seq0( +
, 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
| 28 | 19, 27 | sylan2 491 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑁 − 1))) → ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
| 29 | 18, 28 | fsumcl 14464 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
| 30 | 17, 29 | mulcld 10060 |
. . . 4
⊢ (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℂ) |
| 31 | 30 | abscld 14175 |
. . 3
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ∈ ℝ) |
| 32 | | eqid 2622 |
. . . . . 6
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 33 | | abelthlem7.3 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 34 | 33 | nn0zd 11480 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 35 | | eluznn0 11757 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑛 ∈
(ℤ≥‘𝑁)) → 𝑛 ∈ ℕ0) |
| 36 | 33, 35 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑛 ∈ ℕ0) |
| 37 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (seq0( + , 𝐴)‘𝑘) = (seq0( + , 𝐴)‘𝑛)) |
| 38 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑋↑𝑘) = (𝑋↑𝑛)) |
| 39 | 37, 38 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
| 40 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘))) |
| 41 | | ovex 6678 |
. . . . . . . 8
⊢ ((seq0( +
, 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ V |
| 42 | 39, 40, 41 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
| 43 | 36, 42 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
| 44 | 36, 27 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
| 45 | 1, 2, 3, 4, 5 | abelthlem2 24186 |
. . . . . . . . . 10
⊢ (𝜑 → (1 ∈ 𝑆 ∧ (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1))) |
| 46 | 45 | simprd 479 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ∖ {1}) ⊆ (0(ball‘(abs
∘ − ))1)) |
| 47 | 46, 8 | sseldd 3604 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) |
| 48 | 1, 2, 3, 4, 5, 6, 13 | abelthlem5 24189 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (0(ball‘(abs ∘ −
))1)) → seq0( + , (𝑘
∈ ℕ0 ↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
| 49 | 47, 48 | mpdan 702 |
. . . . . . 7
⊢ (𝜑 → seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
| 50 | 42 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) = ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
| 51 | 50, 27 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
| 52 | 20, 33, 51 | iserex 14387 |
. . . . . . 7
⊢ (𝜑 → (seq0( + , (𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ↔ seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ )) |
| 53 | 49, 52 | mpbid 222 |
. . . . . 6
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))) ∈ dom ⇝ ) |
| 54 | 32, 34, 43, 44, 53 | isumcl 14492 |
. . . . 5
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ) |
| 55 | 17, 54 | mulcld 10060 |
. . . 4
⊢ (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℂ) |
| 56 | 55 | abscld 14175 |
. . 3
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ∈ ℝ) |
| 57 | 31, 56 | readdcld 10069 |
. 2
⊢ (𝜑 → ((abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) ∈ ℝ) |
| 58 | | peano2re 10209 |
. . . 4
⊢ (𝑀 ∈ ℝ → (𝑀 + 1) ∈
ℝ) |
| 59 | 3, 58 | syl 17 |
. . 3
⊢ (𝜑 → (𝑀 + 1) ∈ ℝ) |
| 60 | | abelthlem7.2 |
. . . 4
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
| 61 | 60 | rpred 11872 |
. . 3
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 62 | 59, 61 | remulcld 10070 |
. 2
⊢ (𝜑 → ((𝑀 + 1) · 𝑅) ∈ ℝ) |
| 63 | 1, 2, 3, 4, 5, 6, 13, 8 | abelthlem6 24190 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝑋) = ((1 − 𝑋) · Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 64 | 20, 32, 33, 50, 27, 49 | isumsplit 14572 |
. . . . . 6
⊢ (𝜑 → Σ𝑛 ∈ ℕ0 ((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) = (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) + Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 65 | 64 | oveq2d 6666 |
. . . . 5
⊢ (𝜑 → ((1 − 𝑋) · Σ𝑛 ∈ ℕ0
((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = ((1 − 𝑋) · (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) + Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 66 | 17, 29, 54 | adddid 10064 |
. . . . 5
⊢ (𝜑 → ((1 − 𝑋) · (Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)) + Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = (((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 67 | 63, 65, 66 | 3eqtrd 2660 |
. . . 4
⊢ (𝜑 → (𝐹‘𝑋) = (((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 68 | 67 | fveq2d 6195 |
. . 3
⊢ (𝜑 → (abs‘(𝐹‘𝑋)) = (abs‘(((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))))) |
| 69 | 30, 55 | abstrid 14195 |
. . 3
⊢ (𝜑 → (abs‘(((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) + ((1 − 𝑋) · Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) ≤ ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))))) |
| 70 | 68, 69 | eqbrtrd 4675 |
. 2
⊢ (𝜑 → (abs‘(𝐹‘𝑋)) ≤ ((abs‘((1 − 𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))))) |
| 71 | 3, 61 | remulcld 10070 |
. . . 4
⊢ (𝜑 → (𝑀 · 𝑅) ∈ ℝ) |
| 72 | 17 | abscld 14175 |
. . . . . 6
⊢ (𝜑 → (abs‘(1 −
𝑋)) ∈
ℝ) |
| 73 | 24 | abscld 14175 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ) |
| 74 | 19, 73 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (abs‘(seq0( + ,
𝐴)‘𝑛)) ∈ ℝ) |
| 75 | 18, 74 | fsumrecl 14465 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ) |
| 76 | | peano2re 10209 |
. . . . . . 7
⊢
(Σ𝑛 ∈
(0...(𝑁 −
1))(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℝ → (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ) |
| 77 | 75, 76 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ) |
| 78 | 72, 77 | remulcld 10070 |
. . . . 5
⊢ (𝜑 → ((abs‘(1 −
𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) ∈ ℝ) |
| 79 | 17, 29 | absmuld 14193 |
. . . . . 6
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = ((abs‘(1 − 𝑋)) ·
(abs‘Σ𝑛 ∈
(0...(𝑁 − 1))((seq0(
+ , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 80 | 29 | abscld 14175 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 81 | 17 | absge0d 14183 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ (abs‘(1
− 𝑋))) |
| 82 | 27 | abscld 14175 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 83 | 19, 82 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 84 | 18, 83 | fsumrecl 14465 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 85 | 18, 28 | fsumabs 14533 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 86 | 15 | abscld 14175 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs‘𝑋) ∈
ℝ) |
| 87 | | reexpcl 12877 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘𝑋)
∈ ℝ ∧ 𝑛
∈ ℕ0) → ((abs‘𝑋)↑𝑛) ∈ ℝ) |
| 88 | 86, 87 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘𝑋)↑𝑛) ∈
ℝ) |
| 89 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 1 ∈
ℝ) |
| 90 | 24 | absge0d 14183 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
(abs‘(seq0( + , 𝐴)‘𝑛))) |
| 91 | 86 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘𝑋) ∈
ℝ) |
| 92 | 15 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤ (abs‘𝑋)) |
| 93 | 92 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 0 ≤
(abs‘𝑋)) |
| 94 | | 0cn 10032 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 0 ∈
ℂ |
| 95 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (abs
∘ − ) = (abs ∘ − ) |
| 96 | 95 | cnmetdval 22574 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 ∈ ℂ ∧ 0 ∈
ℂ) → (𝑋(abs
∘ − )0) = (abs‘(𝑋 − 0))) |
| 97 | 15, 94, 96 | sylancl 694 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋(abs ∘ − )0) = (abs‘(𝑋 − 0))) |
| 98 | 15 | subid1d 10381 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑋 − 0) = 𝑋) |
| 99 | 98 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (abs‘(𝑋 − 0)) = (abs‘𝑋)) |
| 100 | 97, 99 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋(abs ∘ − )0) = (abs‘𝑋)) |
| 101 | | cnxmet 22576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 102 | | 1rp 11836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 1 ∈
ℝ+ |
| 103 | | rpxr 11840 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
| 104 | 102, 103 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℝ* |
| 105 | | elbl3 22197 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈
ℝ*) ∧ (0 ∈ ℂ ∧ 𝑋 ∈ ℂ)) → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
| 106 | 101, 104,
105 | mpanl12 718 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((0
∈ ℂ ∧ 𝑋
∈ ℂ) → (𝑋
∈ (0(ball‘(abs ∘ − ))1) ↔ (𝑋(abs ∘ − )0) <
1)) |
| 107 | 94, 15, 106 | sylancr 695 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑋 ∈ (0(ball‘(abs ∘ −
))1) ↔ (𝑋(abs ∘
− )0) < 1)) |
| 108 | 47, 107 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑋(abs ∘ − )0) <
1) |
| 109 | 100, 108 | eqbrtrrd 4677 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (abs‘𝑋) < 1) |
| 110 | | 1re 10039 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
| 111 | | ltle 10126 |
. . . . . . . . . . . . . . . . . 18
⊢
(((abs‘𝑋)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 → (abs‘𝑋) ≤ 1)) |
| 112 | 86, 110, 111 | sylancl 694 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((abs‘𝑋) < 1 → (abs‘𝑋) ≤ 1)) |
| 113 | 109, 112 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘𝑋) ≤ 1) |
| 114 | 113 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘𝑋) ≤
1) |
| 115 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 116 | | exple1 12920 |
. . . . . . . . . . . . . . 15
⊢
((((abs‘𝑋)
∈ ℝ ∧ 0 ≤ (abs‘𝑋) ∧ (abs‘𝑋) ≤ 1) ∧ 𝑛 ∈ ℕ0) →
((abs‘𝑋)↑𝑛) ≤ 1) |
| 117 | 91, 93, 114, 115, 116 | syl31anc 1329 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘𝑋)↑𝑛) ≤ 1) |
| 118 | 88, 89, 73, 90, 117 | lemul2ad 10964 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) ≤ ((abs‘(seq0( + , 𝐴)‘𝑛)) · 1)) |
| 119 | 24, 26 | absmuld 14193 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · (abs‘(𝑋↑𝑛)))) |
| 120 | | absexp 14044 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (abs‘(𝑋↑𝑛)) = ((abs‘𝑋)↑𝑛)) |
| 121 | 15, 120 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘(𝑋↑𝑛)) = ((abs‘𝑋)↑𝑛)) |
| 122 | 121 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘(seq0( + , 𝐴)‘𝑛)) · (abs‘(𝑋↑𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛))) |
| 123 | 119, 122 | eqtr2d 2657 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 124 | 73 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘(seq0( + , 𝐴)‘𝑛)) ∈ ℂ) |
| 125 | 124 | mulid1d 10057 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
((abs‘(seq0( + , 𝐴)‘𝑛)) · 1) = (abs‘(seq0( + , 𝐴)‘𝑛))) |
| 126 | 118, 123,
125 | 3brtr3d 4684 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ (abs‘(seq0( + , 𝐴)‘𝑛))) |
| 127 | 19, 126 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑁 − 1))) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ (abs‘(seq0( + , 𝐴)‘𝑛))) |
| 128 | 18, 83, 74, 127 | fsumle 14531 |
. . . . . . . . . 10
⊢ (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))) |
| 129 | 80, 84, 75, 85, 128 | letrd 10194 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))) |
| 130 | 75 | ltp1d 10954 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) |
| 131 | 80, 75, 77, 129, 130 | lelttrd 10195 |
. . . . . . . 8
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) |
| 132 | 80, 77, 131 | ltled 10185 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) |
| 133 | 80, 77, 72, 81, 132 | lemul2ad 10964 |
. . . . . 6
⊢ (𝜑 → ((abs‘(1 −
𝑋)) ·
(abs‘Σ𝑛 ∈
(0...(𝑁 − 1))((seq0(
+ , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ≤ ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) |
| 134 | 79, 133 | eqbrtrd 4675 |
. . . . 5
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ≤ ((abs‘(1 − 𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) |
| 135 | | abelthlem7.5 |
. . . . . 6
⊢ (𝜑 → (abs‘(1 −
𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) |
| 136 | | 0red 10041 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ) |
| 137 | 19, 90 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (0...(𝑁 − 1))) → 0 ≤
(abs‘(seq0( + , 𝐴)‘𝑛))) |
| 138 | 18, 74, 137 | fsumge0 14527 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛))) |
| 139 | 136, 75, 77, 138, 130 | lelttrd 10195 |
. . . . . . 7
⊢ (𝜑 → 0 < (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) |
| 140 | | ltmuldiv 10896 |
. . . . . . 7
⊢
(((abs‘(1 − 𝑋)) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ((Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1) ∈ ℝ ∧ 0 <
(Σ𝑛 ∈
(0...(𝑁 −
1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1))) → (((abs‘(1 −
𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅 ↔ (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))) |
| 141 | 72, 61, 77, 139, 140 | syl112anc 1330 |
. . . . . 6
⊢ (𝜑 → (((abs‘(1 −
𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅 ↔ (abs‘(1 − 𝑋)) < (𝑅 / (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)))) |
| 142 | 135, 141 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ((abs‘(1 −
𝑋)) · (Σ𝑛 ∈ (0...(𝑁 − 1))(abs‘(seq0( + , 𝐴)‘𝑛)) + 1)) < 𝑅) |
| 143 | 31, 78, 61, 134, 142 | lelttrd 10195 |
. . . 4
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) < 𝑅) |
| 144 | 17, 54 | absmuld 14193 |
. . . . 5
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = ((abs‘(1 − 𝑋)) ·
(abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 145 | 54 | abscld 14175 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 146 | 39 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑛 → (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 147 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) = (𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))) |
| 148 | | fvex 6201 |
. . . . . . . . . 10
⊢
(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ V |
| 149 | 146, 147,
148 | fvmpt 6282 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 150 | 36, 149 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 151 | 44 | abscld 14175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 152 | | uzid 11702 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
(ℤ≥‘𝑁)) |
| 153 | 34, 152 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
| 154 | | oveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → ((abs‘𝑋)↑𝑘) = ((abs‘𝑋)↑𝑛)) |
| 155 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ ((abs‘𝑋)↑𝑘)) = (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘)) |
| 156 | | ovex 6678 |
. . . . . . . . . . . 12
⊢
((abs‘𝑋)↑𝑛) ∈ V |
| 157 | 154, 155,
156 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ ((abs‘𝑋)↑𝑘))‘𝑛) = ((abs‘𝑋)↑𝑛)) |
| 158 | 36, 157 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛) = ((abs‘𝑋)↑𝑛)) |
| 159 | 36, 88 | syldan 487 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((abs‘𝑋)↑𝑛) ∈ ℝ) |
| 160 | 158, 159 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛) ∈ ℝ) |
| 161 | 151 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℂ) |
| 162 | 150, 161 | eqeltrd 2701 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛) ∈ ℂ) |
| 163 | 86 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝜑 → (abs‘𝑋) ∈
ℂ) |
| 164 | | absidm 14063 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) |
| 165 | 15, 164 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(abs‘(abs‘𝑋)) =
(abs‘𝑋)) |
| 166 | 165, 109 | eqbrtrd 4675 |
. . . . . . . . . . 11
⊢ (𝜑 →
(abs‘(abs‘𝑋))
< 1) |
| 167 | 163, 166,
33, 158 | geolim2 14602 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))) ⇝ (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) |
| 168 | | seqex 12803 |
. . . . . . . . . . 11
⊢ seq𝑁( + , (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))) ∈ V |
| 169 | | ovex 6678 |
. . . . . . . . . . 11
⊢
(((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) ∈ V |
| 170 | 168, 169 | breldm 5329 |
. . . . . . . . . 10
⊢ (seq𝑁( + , (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))) ⇝ (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))) ∈ dom ⇝
) |
| 171 | 167, 170 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))) ∈ dom ⇝
) |
| 172 | 119, 122 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛))) |
| 173 | 36, 172 | syldan 487 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) = ((abs‘(seq0( + , 𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛))) |
| 174 | 36, 73 | syldan 487 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘(seq0( + ,
𝐴)‘𝑛)) ∈ ℝ) |
| 175 | 61 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 𝑅 ∈ ℝ) |
| 176 | 86 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘𝑋) ∈
ℝ) |
| 177 | 92 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 0 ≤
(abs‘𝑋)) |
| 178 | 176, 36, 177 | expge0d 13026 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → 0 ≤
((abs‘𝑋)↑𝑛)) |
| 179 | | abelthlem7.4 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅) |
| 180 | 37 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑛 → (abs‘(seq0( + , 𝐴)‘𝑘)) = (abs‘(seq0( + , 𝐴)‘𝑛))) |
| 181 | 180 | breq1d 4663 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑛 → ((abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅 ↔ (abs‘(seq0( + , 𝐴)‘𝑛)) < 𝑅)) |
| 182 | 181 | rspccva 3308 |
. . . . . . . . . . . . . 14
⊢
((∀𝑘 ∈
(ℤ≥‘𝑁)(abs‘(seq0( + , 𝐴)‘𝑘)) < 𝑅 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘(seq0( + ,
𝐴)‘𝑛)) < 𝑅) |
| 183 | 179, 182 | sylan 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘(seq0( + ,
𝐴)‘𝑛)) < 𝑅) |
| 184 | 174, 175,
183 | ltled 10185 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘(seq0( + ,
𝐴)‘𝑛)) ≤ 𝑅) |
| 185 | 174, 175,
159, 178, 184 | lemul1ad 10963 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((abs‘(seq0( + ,
𝐴)‘𝑛)) · ((abs‘𝑋)↑𝑛)) ≤ (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 186 | 173, 185 | eqbrtrd 4675 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((seq0( + ,
𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 187 | 150 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((𝑘 ∈ ℕ0
↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛)) = (abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) |
| 188 | | absidm 14063 |
. . . . . . . . . . . 12
⊢ (((seq0(
+ , 𝐴)‘𝑛) · (𝑋↑𝑛)) ∈ ℂ →
(abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 189 | 44, 188 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) →
(abs‘(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 190 | 187, 189 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((𝑘 ∈ ℕ0
↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 191 | 158 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝑅 · ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛)) = (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 192 | 186, 190,
191 | 3brtr4d 4685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((𝑘 ∈ ℕ0
↦ (abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛)) ≤ (𝑅 · ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛))) |
| 193 | 32, 153, 160, 162, 171, 61, 192 | cvgcmpce 14550 |
. . . . . . . 8
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))) ∈ dom ⇝ ) |
| 194 | 32, 34, 150, 151, 193 | isumrecl 14496 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ∈ ℝ) |
| 195 | | eldifsni 4320 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ (𝑆 ∖ {1}) → 𝑋 ≠ 1) |
| 196 | 8, 195 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 1) |
| 197 | 196 | necomd 2849 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ≠ 𝑋) |
| 198 | | subeq0 10307 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℂ ∧ 𝑋
∈ ℂ) → ((1 − 𝑋) = 0 ↔ 1 = 𝑋)) |
| 199 | 198 | necon3bid 2838 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ 𝑋
∈ ℂ) → ((1 − 𝑋) ≠ 0 ↔ 1 ≠ 𝑋)) |
| 200 | 12, 15, 199 | sylancr 695 |
. . . . . . . . . 10
⊢ (𝜑 → ((1 − 𝑋) ≠ 0 ↔ 1 ≠ 𝑋)) |
| 201 | 197, 200 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (1 − 𝑋) ≠ 0) |
| 202 | 17, 201 | absrpcld 14187 |
. . . . . . . 8
⊢ (𝜑 → (abs‘(1 −
𝑋)) ∈
ℝ+) |
| 203 | 71, 202 | rerpdivcld 11903 |
. . . . . . 7
⊢ (𝜑 → ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ∈ ℝ) |
| 204 | 32, 34, 43, 44, 53 | isumclim2 14489 |
. . . . . . . 8
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))) ⇝ Σ𝑛 ∈ (ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) |
| 205 | 32, 34, 150, 161, 193 | isumclim2 14489 |
. . . . . . . 8
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))) ⇝ Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 206 | 36, 51 | syldan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛) ∈ ℂ) |
| 207 | 43 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (abs‘((𝑘 ∈ ℕ0
↦ ((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛)) = (abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 208 | 150, 207 | eqtr4d 2659 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
(abs‘((seq0( + , 𝐴)‘𝑘) · (𝑋↑𝑘))))‘𝑛) = (abs‘((𝑘 ∈ ℕ0 ↦ ((seq0( +
, 𝐴)‘𝑘) · (𝑋↑𝑘)))‘𝑛))) |
| 209 | 32, 204, 205, 34, 206, 208 | iserabs 14547 |
. . . . . . 7
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) |
| 210 | 86, 33 | reexpcld 13025 |
. . . . . . . . . 10
⊢ (𝜑 → ((abs‘𝑋)↑𝑁) ∈ ℝ) |
| 211 | | difrp 11868 |
. . . . . . . . . . . 12
⊢
(((abs‘𝑋)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 ↔ (1 − (abs‘𝑋)) ∈
ℝ+)) |
| 212 | 86, 110, 211 | sylancl 694 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs‘𝑋) < 1 ↔ (1 −
(abs‘𝑋)) ∈
ℝ+)) |
| 213 | 109, 212 | mpbid 222 |
. . . . . . . . . 10
⊢ (𝜑 → (1 −
(abs‘𝑋)) ∈
ℝ+) |
| 214 | 210, 213 | rerpdivcld 11903 |
. . . . . . . . 9
⊢ (𝜑 → (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))) ∈ ℝ) |
| 215 | 61, 214 | remulcld 10070 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ∈ ℝ) |
| 216 | 154 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → (𝑅 · ((abs‘𝑋)↑𝑘)) = (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 217 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
↦ (𝑅 ·
((abs‘𝑋)↑𝑘))) = (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘))) |
| 218 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ V |
| 219 | 216, 217,
218 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ ((𝑘 ∈
ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 220 | 36, 219 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((abs‘𝑋)↑𝑛))) |
| 221 | 175, 159 | remulcld 10070 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ ℝ) |
| 222 | 60 | rpcnd 11874 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 ∈ ℂ) |
| 223 | 160 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛) ∈ ℂ) |
| 224 | 220, 191 | eqtr4d 2659 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))‘𝑛) = (𝑅 · ((𝑘 ∈ ℕ0 ↦
((abs‘𝑋)↑𝑘))‘𝑛))) |
| 225 | 32, 34, 222, 167, 223, 224 | isermulc2 14388 |
. . . . . . . . . . 11
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ⇝ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))))) |
| 226 | | seqex 12803 |
. . . . . . . . . . . 12
⊢ seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ V |
| 227 | | ovex 6678 |
. . . . . . . . . . . 12
⊢ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ∈ V |
| 228 | 226, 227 | breldm 5329 |
. . . . . . . . . . 11
⊢ (seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ⇝ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ dom ⇝ ) |
| 229 | 225, 228 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → seq𝑁( + , (𝑘 ∈ ℕ0 ↦ (𝑅 · ((abs‘𝑋)↑𝑘)))) ∈ dom ⇝ ) |
| 230 | 32, 34, 150, 151, 220, 221, 186, 193, 229 | isumle 14576 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ Σ𝑛 ∈ (ℤ≥‘𝑁)(𝑅 · ((abs‘𝑋)↑𝑛))) |
| 231 | 221 | recnd 10068 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → (𝑅 · ((abs‘𝑋)↑𝑛)) ∈ ℂ) |
| 232 | 32, 34, 220, 231, 225 | isumclim 14488 |
. . . . . . . . 9
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)(𝑅 · ((abs‘𝑋)↑𝑛)) = (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))))) |
| 233 | 230, 232 | breqtrd 4679 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋))))) |
| 234 | 60, 213 | rpdivcld 11889 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈
ℝ+) |
| 235 | 234 | rpred 11872 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈ ℝ) |
| 236 | 210 | recnd 10068 |
. . . . . . . . . . 11
⊢ (𝜑 → ((abs‘𝑋)↑𝑁) ∈ ℂ) |
| 237 | 213 | rpcnd 11874 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 −
(abs‘𝑋)) ∈
ℂ) |
| 238 | 213 | rpne0d 11877 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 −
(abs‘𝑋)) ≠
0) |
| 239 | 222, 236,
237, 238 | div12d 10837 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) = (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋))))) |
| 240 | | 1red 10055 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℝ) |
| 241 | 234 | rpge0d 11876 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ≤ (𝑅 / (1 − (abs‘𝑋)))) |
| 242 | | exple1 12920 |
. . . . . . . . . . . . 13
⊢
((((abs‘𝑋)
∈ ℝ ∧ 0 ≤ (abs‘𝑋) ∧ (abs‘𝑋) ≤ 1) ∧ 𝑁 ∈ ℕ0) →
((abs‘𝑋)↑𝑁) ≤ 1) |
| 243 | 86, 92, 113, 33, 242 | syl31anc 1329 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((abs‘𝑋)↑𝑁) ≤ 1) |
| 244 | 210, 240,
235, 241, 243 | lemul1ad 10963 |
. . . . . . . . . . 11
⊢ (𝜑 → (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋)))) ≤ (1 · (𝑅 / (1 − (abs‘𝑋))))) |
| 245 | 234 | rpcnd 11874 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ∈ ℂ) |
| 246 | 245 | mulid2d 10058 |
. . . . . . . . . . 11
⊢ (𝜑 → (1 · (𝑅 / (1 − (abs‘𝑋)))) = (𝑅 / (1 − (abs‘𝑋)))) |
| 247 | 244, 246 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (𝜑 → (((abs‘𝑋)↑𝑁) · (𝑅 / (1 − (abs‘𝑋)))) ≤ (𝑅 / (1 − (abs‘𝑋)))) |
| 248 | 239, 247 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ≤ (𝑅 / (1 − (abs‘𝑋)))) |
| 249 | 14 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (abs‘(1 −
𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋)))) |
| 250 | | resubcl 10345 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (1 −
(abs‘𝑋)) ∈
ℝ) |
| 251 | 110, 86, 250 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (1 −
(abs‘𝑋)) ∈
ℝ) |
| 252 | 3, 251 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑀 · (1 − (abs‘𝑋))) ∈
ℝ) |
| 253 | 72, 252, 60 | lemul2d 11916 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((abs‘(1 −
𝑋)) ≤ (𝑀 · (1 − (abs‘𝑋))) ↔ (𝑅 · (abs‘(1 − 𝑋))) ≤ (𝑅 · (𝑀 · (1 − (abs‘𝑋)))))) |
| 254 | 249, 253 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 · (abs‘(1 − 𝑋))) ≤ (𝑅 · (𝑀 · (1 − (abs‘𝑋))))) |
| 255 | 3 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 256 | 222, 255,
237 | mul12d 10245 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 · (𝑀 · (1 − (abs‘𝑋)))) = (𝑀 · (𝑅 · (1 − (abs‘𝑋))))) |
| 257 | 222, 237 | mulcomd 10061 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 · (1 − (abs‘𝑋))) = ((1 −
(abs‘𝑋)) ·
𝑅)) |
| 258 | 257 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 · (𝑅 · (1 − (abs‘𝑋)))) = (𝑀 · ((1 − (abs‘𝑋)) · 𝑅))) |
| 259 | 255, 237,
222 | mul12d 10245 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑀 · ((1 − (abs‘𝑋)) · 𝑅)) = ((1 − (abs‘𝑋)) · (𝑀 · 𝑅))) |
| 260 | 256, 258,
259 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑅 · (𝑀 · (1 − (abs‘𝑋)))) = ((1 −
(abs‘𝑋)) ·
(𝑀 · 𝑅))) |
| 261 | 254, 260 | breqtrd 4679 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 · (abs‘(1 − 𝑋))) ≤ ((1 −
(abs‘𝑋)) ·
(𝑀 · 𝑅))) |
| 262 | 251, 71 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((1 −
(abs‘𝑋)) ·
(𝑀 · 𝑅)) ∈
ℝ) |
| 263 | 61, 262, 202 | lemuldivd 11921 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑅 · (abs‘(1 − 𝑋))) ≤ ((1 −
(abs‘𝑋)) ·
(𝑀 · 𝑅)) ↔ 𝑅 ≤ (((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) / (abs‘(1 − 𝑋))))) |
| 264 | 261, 263 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ≤ (((1 − (abs‘𝑋)) · (𝑀 · 𝑅)) / (abs‘(1 − 𝑋)))) |
| 265 | 71 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 · 𝑅) ∈ ℂ) |
| 266 | 72 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(1 −
𝑋)) ∈
ℂ) |
| 267 | 202 | rpne0d 11877 |
. . . . . . . . . . . 12
⊢ (𝜑 → (abs‘(1 −
𝑋)) ≠
0) |
| 268 | 237, 265,
266, 267 | divassd 10836 |
. . . . . . . . . . 11
⊢ (𝜑 → (((1 −
(abs‘𝑋)) ·
(𝑀 · 𝑅)) / (abs‘(1 − 𝑋))) = ((1 −
(abs‘𝑋)) ·
((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))) |
| 269 | 264, 268 | breqtrd 4679 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))) |
| 270 | | posdif 10521 |
. . . . . . . . . . . . 13
⊢
(((abs‘𝑋)
∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝑋) < 1 ↔ 0 < (1 −
(abs‘𝑋)))) |
| 271 | 86, 110, 270 | sylancl 694 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((abs‘𝑋) < 1 ↔ 0 < (1
− (abs‘𝑋)))) |
| 272 | 109, 271 | mpbid 222 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 < (1 −
(abs‘𝑋))) |
| 273 | | ledivmul 10899 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ ℝ ∧ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ∈ ℝ ∧ ((1 −
(abs‘𝑋)) ∈
ℝ ∧ 0 < (1 − (abs‘𝑋)))) → ((𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ↔ 𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))))) |
| 274 | 61, 203, 251, 272, 273 | syl112anc 1330 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))) ↔ 𝑅 ≤ ((1 − (abs‘𝑋)) · ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))))) |
| 275 | 269, 274 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 / (1 − (abs‘𝑋))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))) |
| 276 | 215, 235,
203, 248, 275 | letrd 10194 |
. . . . . . . 8
⊢ (𝜑 → (𝑅 · (((abs‘𝑋)↑𝑁) / (1 − (abs‘𝑋)))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))) |
| 277 | 194, 215,
203, 233, 276 | letrd 10194 |
. . . . . . 7
⊢ (𝜑 → Σ𝑛 ∈ (ℤ≥‘𝑁)(abs‘((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))) |
| 278 | 145, 194,
203, 209, 277 | letrd 10194 |
. . . . . 6
⊢ (𝜑 → (abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋)))) |
| 279 | 145, 71, 202 | lemuldiv2d 11922 |
. . . . . 6
⊢ (𝜑 → (((abs‘(1 −
𝑋)) ·
(abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ≤ (𝑀 · 𝑅) ↔ (abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))) ≤ ((𝑀 · 𝑅) / (abs‘(1 − 𝑋))))) |
| 280 | 278, 279 | mpbird 247 |
. . . . 5
⊢ (𝜑 → ((abs‘(1 −
𝑋)) ·
(abs‘Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ≤ (𝑀 · 𝑅)) |
| 281 | 144, 280 | eqbrtrd 4675 |
. . . 4
⊢ (𝜑 → (abs‘((1 −
𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) ≤ (𝑀 · 𝑅)) |
| 282 | 31, 56, 61, 71, 143, 281 | ltleaddd 10648 |
. . 3
⊢ (𝜑 → ((abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) < (𝑅 + (𝑀 · 𝑅))) |
| 283 | | 1cnd 10056 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℂ) |
| 284 | 255, 283,
222 | adddird 10065 |
. . . 4
⊢ (𝜑 → ((𝑀 + 1) · 𝑅) = ((𝑀 · 𝑅) + (1 · 𝑅))) |
| 285 | 222 | mulid2d 10058 |
. . . . 5
⊢ (𝜑 → (1 · 𝑅) = 𝑅) |
| 286 | 285 | oveq2d 6666 |
. . . 4
⊢ (𝜑 → ((𝑀 · 𝑅) + (1 · 𝑅)) = ((𝑀 · 𝑅) + 𝑅)) |
| 287 | 265, 222 | addcomd 10238 |
. . . 4
⊢ (𝜑 → ((𝑀 · 𝑅) + 𝑅) = (𝑅 + (𝑀 · 𝑅))) |
| 288 | 284, 286,
287 | 3eqtrd 2660 |
. . 3
⊢ (𝜑 → ((𝑀 + 1) · 𝑅) = (𝑅 + (𝑀 · 𝑅))) |
| 289 | 282, 288 | breqtrrd 4681 |
. 2
⊢ (𝜑 → ((abs‘((1 −
𝑋) · Σ𝑛 ∈ (0...(𝑁 − 1))((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛)))) + (abs‘((1 − 𝑋) · Σ𝑛 ∈
(ℤ≥‘𝑁)((seq0( + , 𝐴)‘𝑛) · (𝑋↑𝑛))))) < ((𝑀 + 1) · 𝑅)) |
| 290 | 11, 57, 62, 70, 289 | lelttrd 10195 |
1
⊢ (𝜑 → (abs‘(𝐹‘𝑋)) < ((𝑀 + 1) · 𝑅)) |