| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 12772 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (1...(⌊‘𝑥)) ∈ Fin) |
| 2 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℝ+) |
| 3 | | elfznn 12370 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 4 | 3 | nnrpd 11870 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
| 5 | | rpdivcl 11856 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
| 6 | 2, 4, 5 | syl2an 494 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 7 | 6 | relogcld 24369 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 8 | | simpll 790 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈
ℕ0) |
| 9 | 7, 8 | reexpcld 13025 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 10 | 1, 9 | fsumrecl 14465 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 11 | | relogcl 24322 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 12 | | id 22 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℕ0) |
| 13 | | reexpcl 12877 |
. . . . . . 7
⊢
(((log‘𝑥)
∈ ℝ ∧ 𝑁
∈ ℕ0) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 14 | 11, 12, 13 | syl2anr 495 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 15 | | faccl 13070 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℕ) |
| 16 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℕ) |
| 17 | 16 | nnred 11035 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℝ) |
| 18 | | fzfid 12772 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (0...𝑁) ∈ Fin) |
| 19 | 11 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (log‘𝑥) ∈ ℝ) |
| 20 | | elfznn0 12433 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 21 | | reexpcl 12877 |
. . . . . . . . . 10
⊢
(((log‘𝑥)
∈ ℝ ∧ 𝑘
∈ ℕ0) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 22 | 19, 20, 21 | syl2an 494 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 23 | 20 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 24 | | faccl 13070 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 26 | 22, 25 | nndivred 11069 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 27 | 18, 26 | fsumrecl 14465 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 28 | 17, 27 | remulcld 10070 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ) |
| 29 | 14, 28 | resubcld 10458 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ) |
| 30 | 10, 29 | resubcld 10458 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℝ) |
| 31 | 30, 2 | rerpdivcld 11903 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℝ) |
| 32 | | rerpdivcl 11861 |
. . . 4
⊢
(((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ) |
| 33 | 29, 32 | sylancom 701 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℝ) |
| 34 | | 1red 10055 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 1 ∈ ℝ) |
| 35 | 15 | nncnd 11036 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℂ) |
| 36 | | simpl 473 |
. . . . . . . . 9
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) → 𝑘 = 𝑁) |
| 37 | 36 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) →
((log‘𝑥)↑𝑘) = ((log‘𝑥)↑𝑁)) |
| 38 | 37 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝑘 = 𝑁 ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑘) / 𝑥) = (((log‘𝑥)↑𝑁) / 𝑥)) |
| 39 | 38 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝑘 = 𝑁 → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑁) / 𝑥))) |
| 40 | 39 | breq1d 4663 |
. . . . 5
⊢ (𝑘 = 𝑁 → ((𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟 0 ↔
(𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟
0)) |
| 41 | 11 | recnd 10068 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℂ) |
| 42 | | id 22 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℕ0) |
| 43 | | cxpexp 24414 |
. . . . . . . . 9
⊢
(((log‘𝑥)
∈ ℂ ∧ 𝑘
∈ ℕ0) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘)) |
| 44 | 41, 42, 43 | syl2anr 495 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑐𝑘) = ((log‘𝑥)↑𝑘)) |
| 45 | | rpcn 11841 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 46 | 45 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℂ) |
| 47 | 46 | cxp1d 24452 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (𝑥↑𝑐1) = 𝑥) |
| 48 | 44, 47 | oveq12d 6668 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)) =
(((log‘𝑥)↑𝑘) / 𝑥)) |
| 49 | 48 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1))) = (𝑥 ∈ ℝ+
↦ (((log‘𝑥)↑𝑘) / 𝑥))) |
| 50 | | nn0cn 11302 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 51 | | 1rp 11836 |
. . . . . . 7
⊢ 1 ∈
ℝ+ |
| 52 | | cxploglim2 24705 |
. . . . . . 7
⊢ ((𝑘 ∈ ℂ ∧ 1 ∈
ℝ+) → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)))
⇝𝑟 0) |
| 53 | 50, 51, 52 | sylancl 694 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑐𝑘) / (𝑥↑𝑐1)))
⇝𝑟 0) |
| 54 | 49, 53 | eqbrtrrd 4677 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟
0) |
| 55 | 40, 54 | vtoclga 3272 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑𝑁) / 𝑥)) ⇝𝑟
0) |
| 56 | | rerpdivcl 11861 |
. . . . . 6
⊢
((((log‘𝑥)↑𝑁) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 57 | 14, 56 | sylancom 701 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 58 | 57 | recnd 10068 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 59 | 10 | recnd 10068 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ) |
| 60 | 14 | recnd 10068 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 61 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (!‘𝑁) ∈ ℂ) |
| 62 | 27 | recnd 10068 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 63 | 61, 62 | mulcld 10060 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 64 | 60, 63 | subcld 10392 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ) |
| 65 | 59, 64 | subcld 10392 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ) |
| 66 | | rpcnne0 11850 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
| 67 | 66 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 68 | 67 | simpld 475 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ∈ ℂ) |
| 69 | 67 | simprd 479 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → 𝑥 ≠ 0) |
| 70 | 65, 68, 69 | divcld 10801 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ) |
| 71 | 70 | adantrr 753 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) ∈ ℂ) |
| 72 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℕ) |
| 73 | 72 | nncnd 11036 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ∈ ℂ) |
| 74 | 71, 73 | subcld 10392 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) ∈ ℂ) |
| 75 | 74 | abscld 14175 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ∈ ℝ) |
| 76 | 57 | adantrr 753 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℝ) |
| 77 | 76 | recnd 10068 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 78 | 77 | abscld 14175 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((log‘𝑥)↑𝑁) / 𝑥)) ∈ ℝ) |
| 79 | | ioorp 12251 |
. . . . . . . . . 10
⊢
(0(,)+∞) = ℝ+ |
| 80 | 79 | eqcomi 2631 |
. . . . . . . . 9
⊢
ℝ+ = (0(,)+∞) |
| 81 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 82 | | 1z 11407 |
. . . . . . . . . 10
⊢ 1 ∈
ℤ |
| 83 | 82 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℤ) |
| 84 | | 1red 10055 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℝ) |
| 85 | | 1re 10039 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 86 | | 1nn0 11308 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ0 |
| 87 | 85, 86 | nn0addge1i 11341 |
. . . . . . . . . 10
⊢ 1 ≤ (1
+ 1) |
| 88 | 87 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ (1 + 1)) |
| 89 | | 0red 10041 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ ℝ) |
| 90 | 72 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℕ) |
| 91 | 90 | nnred 11035 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℝ) |
| 92 | | rpre 11839 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 93 | 92 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℝ) |
| 94 | | fzfid 12772 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(0...𝑁) ∈
Fin) |
| 95 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 96 | | rpdivcl 11856 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ+
∧ 𝑦 ∈
ℝ+) → (𝑥 / 𝑦) ∈
ℝ+) |
| 97 | 95, 96 | sylan 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑥 / 𝑦) ∈
ℝ+) |
| 98 | 97 | relogcld 24369 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(log‘(𝑥 / 𝑦)) ∈
ℝ) |
| 99 | | reexpcl 12877 |
. . . . . . . . . . . . . 14
⊢
(((log‘(𝑥 /
𝑦)) ∈ ℝ ∧
𝑘 ∈
ℕ0) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ) |
| 100 | 98, 20, 99 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) ∈ ℝ) |
| 101 | 20 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 102 | 101, 24 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 103 | 100, 102 | nndivred 11069 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 104 | 94, 103 | fsumrecl 14465 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 105 | 93, 104 | remulcld 10070 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℝ) |
| 106 | 91, 105 | remulcld 10070 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) ∈ ℝ) |
| 107 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑁 ∈
ℕ0) |
| 108 | 98, 107 | reexpcld 13025 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ) |
| 109 | | nnrp 11842 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
| 110 | 109, 108 | sylan2 491 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℕ) → ((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℝ) |
| 111 | | reelprrecn 10028 |
. . . . . . . . . . . 12
⊢ ℝ
∈ {ℝ, ℂ} |
| 112 | 111 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ℝ ∈ {ℝ,
ℂ}) |
| 113 | 105 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 114 | 108, 90 | nndivred 11069 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)) ∈ ℝ) |
| 115 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 116 | | advlogexp 24401 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑁 ∈
ℕ0) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) |
| 117 | 95, 115, 116 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦ (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (𝑦 ∈ ℝ+ ↦
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) |
| 118 | 112, 113,
114, 117, 73 | dvmptcmul 23727 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))))) |
| 119 | 108 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((log‘(𝑥 / 𝑦))↑𝑁) ∈ ℂ) |
| 120 | 73 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ∈
ℂ) |
| 121 | 72 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (!‘𝑁) ≠ 0) |
| 122 | 121 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
(!‘𝑁) ≠
0) |
| 123 | 119, 120,
122 | divcan2d 10803 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) →
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁))) = ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 124 | 123 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(((log‘(𝑥 / 𝑦))↑𝑁) / (!‘𝑁)))) = (𝑦 ∈ ℝ+ ↦
((log‘(𝑥 / 𝑦))↑𝑁))) |
| 125 | 118, 124 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (ℝ D (𝑦 ∈ ℝ+ ↦
((!‘𝑁) ·
(𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
((log‘(𝑥 / 𝑦))↑𝑁))) |
| 126 | | oveq2 6658 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑛 → (𝑥 / 𝑦) = (𝑥 / 𝑛)) |
| 127 | 126 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (log‘(𝑥 / 𝑦)) = (log‘(𝑥 / 𝑛))) |
| 128 | 127 | oveq1d 6665 |
. . . . . . . . 9
⊢ (𝑦 = 𝑛 → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘(𝑥 / 𝑛))↑𝑁)) |
| 129 | 95 | rpxrd 11873 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ*) |
| 130 | | simp1rl 1126 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ+) |
| 131 | | simp2r 1088 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℝ+) |
| 132 | 130, 131 | rpdivcld 11889 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑛) ∈
ℝ+) |
| 133 | 132 | relogcld 24369 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 134 | | simp2l 1087 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑦 ∈ ℝ+) |
| 135 | 130, 134 | rpdivcld 11889 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑦) ∈
ℝ+) |
| 136 | 135 | relogcld 24369 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ) |
| 137 | | simp1l 1085 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 138 | | log1 24332 |
. . . . . . . . . . 11
⊢
(log‘1) = 0 |
| 139 | 131 | rpcnd 11874 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ∈ ℂ) |
| 140 | 139 | mulid2d 10058 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 · 𝑛) = 𝑛) |
| 141 | | simp33 1099 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑛 ≤ 𝑥) |
| 142 | 140, 141 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 · 𝑛) ≤ 𝑥) |
| 143 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 1 ∈ ℝ) |
| 144 | 130 | rpred 11872 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 145 | 143, 144,
131 | lemuldivd 11921 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛))) |
| 146 | 142, 145 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 1 ≤ (𝑥 / 𝑛)) |
| 147 | | logleb 24349 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ (𝑥 / 𝑛) ∈ ℝ+) → (1 ≤
(𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛)))) |
| 148 | 51, 132, 147 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (1 ≤ (𝑥 / 𝑛) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑛)))) |
| 149 | 146, 148 | mpbid 222 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘1) ≤
(log‘(𝑥 / 𝑛))) |
| 150 | 138, 149 | syl5eqbrr 4689 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 0 ≤ (log‘(𝑥 / 𝑛))) |
| 151 | | simp32 1098 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → 𝑦 ≤ 𝑛) |
| 152 | 134, 131,
130 | lediv2d 11896 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑦 ≤ 𝑛 ↔ (𝑥 / 𝑛) ≤ (𝑥 / 𝑦))) |
| 153 | 151, 152 | mpbid 222 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (𝑥 / 𝑛) ≤ (𝑥 / 𝑦)) |
| 154 | 132, 135 | logled 24373 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((𝑥 / 𝑛) ≤ (𝑥 / 𝑦) ↔ (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) |
| 155 | 153, 154 | mpbid 222 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → (log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦))) |
| 156 | | leexp1a 12919 |
. . . . . . . . . 10
⊢
((((log‘(𝑥 /
𝑛)) ∈ ℝ ∧
(log‘(𝑥 / 𝑦)) ∈ ℝ ∧ 𝑁 ∈ ℕ0)
∧ (0 ≤ (log‘(𝑥
/ 𝑛)) ∧
(log‘(𝑥 / 𝑛)) ≤ (log‘(𝑥 / 𝑦)))) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 157 | 133, 136,
137, 150, 155, 156 | syl32anc 1334 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 𝑛 ∈ ℝ+)
∧ (1 ≤ 𝑦 ∧ 𝑦 ≤ 𝑛 ∧ 𝑛 ≤ 𝑥)) → ((log‘(𝑥 / 𝑛))↑𝑁) ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 158 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) |
| 159 | 97 | 3ad2antr1 1226 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (𝑥 / 𝑦) ∈
ℝ+) |
| 160 | 159 | relogcld 24369 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (log‘(𝑥 / 𝑦)) ∈ ℝ) |
| 161 | | simpll 790 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑁 ∈
ℕ0) |
| 162 | | rpcn 11841 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) |
| 163 | 162 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈
ℂ) |
| 164 | 163 | 3ad2antr1 1226 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ∈ ℂ) |
| 165 | 164 | mulid2d 10058 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 · 𝑦) = 𝑦) |
| 166 | | simpr3 1069 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ≤ 𝑥) |
| 167 | 165, 166 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 · 𝑦) ≤ 𝑥) |
| 168 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 1 ∈ ℝ) |
| 169 | 95 | rpred 11872 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 170 | 169 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑥 ∈ ℝ) |
| 171 | | simpr1 1067 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 𝑦 ∈ ℝ+) |
| 172 | 168, 170,
171 | lemuldivd 11921 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → ((1 · 𝑦) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑦))) |
| 173 | 167, 172 | mpbid 222 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 1 ≤ (𝑥 / 𝑦)) |
| 174 | | logleb 24349 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℝ+ ∧ (𝑥 / 𝑦) ∈ ℝ+) → (1 ≤
(𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦)))) |
| 175 | 51, 159, 174 | sylancr 695 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (1 ≤ (𝑥 / 𝑦) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑦)))) |
| 176 | 173, 175 | mpbid 222 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → (log‘1) ≤
(log‘(𝑥 / 𝑦))) |
| 177 | 138, 176 | syl5eqbrr 4689 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 0 ≤ (log‘(𝑥 / 𝑦))) |
| 178 | 160, 161,
177 | expge0d 13026 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ (𝑦 ∈ ℝ+ ∧ 1 ≤
𝑦 ∧ 𝑦 ≤ 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑦))↑𝑁)) |
| 179 | 51 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈
ℝ+) |
| 180 | | 1le1 10655 |
. . . . . . . . . 10
⊢ 1 ≤
1 |
| 181 | 180 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 1) |
| 182 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ≤ 𝑥) |
| 183 | 169 | leidd 10594 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≤ 𝑥) |
| 184 | 80, 81, 83, 84, 88, 89, 106, 108, 110, 125, 128, 129, 157, 158, 178, 179, 95, 181, 182, 183 | dvfsumlem4 23792 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) ≤ ⦋1 /
𝑦⦌((log‘(𝑥 / 𝑦))↑𝑁)) |
| 185 | | fzfid 12772 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (1...(⌊‘𝑥)) ∈ Fin) |
| 186 | 95, 4, 5 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 187 | 186 | relogcld 24369 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ) |
| 188 | | simpll 790 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑁 ∈
ℕ0) |
| 189 | 187, 188 | reexpcld 13025 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 190 | 185, 189 | fsumrecl 14465 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℝ) |
| 191 | 190 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ) |
| 192 | 95 | rpcnd 11874 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ∈ ℂ) |
| 193 | 73, 192 | mulcld 10060 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · 𝑥) ∈ ℂ) |
| 194 | 11 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ) |
| 195 | 194 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℂ) |
| 196 | 195, 115 | expcld 13008 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 197 | | fzfid 12772 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (0...𝑁) ∈ Fin) |
| 198 | 194, 20, 21 | syl2an 494 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℝ) |
| 199 | 20 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 200 | 199, 24 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈ ℕ) |
| 201 | 198, 200 | nndivred 11069 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℝ) |
| 202 | 201 | recnd 10068 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 203 | 197, 202 | fsumcl 14464 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 204 | 73, 203 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ) |
| 205 | 196, 204 | subcld 10392 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ) |
| 206 | 191, 193,
205 | sub32d 10424 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 207 | | eqidd 2623 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))))) = (𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))) |
| 208 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥) |
| 209 | 208 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (⌊‘𝑦) = (⌊‘𝑥)) |
| 210 | 209 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (1...(⌊‘𝑦)) = (1...(⌊‘𝑥))) |
| 211 | 210 | sumeq1d 14431 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁)) |
| 212 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 = 𝑥 → (𝑥 / 𝑦) = (𝑥 / 𝑥)) |
| 213 | 66 | ad2antrl 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 214 | | divid 10714 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥 / 𝑥) = 1) |
| 215 | 213, 214 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 𝑥) = 1) |
| 216 | 212, 215 | sylan9eqr 2678 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 / 𝑦) = 1) |
| 217 | 216 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 / 𝑦) = 1) |
| 218 | 217 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘1)) |
| 219 | 218, 138 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = 0) |
| 220 | 219 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = (0↑𝑘)) |
| 221 | 220 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = ((0↑𝑘) / (!‘𝑘))) |
| 222 | 221 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘))) |
| 223 | | nn0uz 11722 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
ℕ0 = (ℤ≥‘0) |
| 224 | 115, 223 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑁 ∈
(ℤ≥‘0)) |
| 225 | | eluzfz1 12348 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘0) → 0 ∈ (0...𝑁)) |
| 226 | 224, 225 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 0 ∈ (0...𝑁)) |
| 227 | 226 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → 0 ∈ (0...𝑁)) |
| 228 | 227 | snssd 4340 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → {0} ⊆ (0...𝑁)) |
| 229 | | elsni 4194 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ {0} → 𝑘 = 0) |
| 230 | 229 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → 𝑘 = 0) |
| 231 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → (0↑𝑘) = (0↑0)) |
| 232 | | 0exp0e1 12865 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0↑0) = 1 |
| 233 | 231, 232 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (0↑𝑘) = 1) |
| 234 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 = 0 → (!‘𝑘) =
(!‘0)) |
| 235 | | fac0 13063 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(!‘0) = 1 |
| 236 | 234, 235 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 = 0 → (!‘𝑘) = 1) |
| 237 | 233, 236 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = (1 / 1)) |
| 238 | | 1div1e1 10717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 / 1) =
1 |
| 239 | 237, 238 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 = 0 → ((0↑𝑘) / (!‘𝑘)) = 1) |
| 240 | 230, 239 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) = 1) |
| 241 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℂ |
| 242 | 240, 241 | syl6eqel 2709 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ {0}) → ((0↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 243 | | eldifi 3732 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ∈ (0...𝑁)) |
| 244 | 243 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (0...𝑁)) |
| 245 | 244, 20 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ0) |
| 246 | | eldifsni 4320 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈ ((0...𝑁) ∖ {0}) → 𝑘 ≠ 0) |
| 247 | 246 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ≠ 0) |
| 248 | | eldifsn 4317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ (ℕ0
∖ {0}) ↔ (𝑘
∈ ℕ0 ∧ 𝑘 ≠ 0)) |
| 249 | 245, 247,
248 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ (ℕ0 ∖
{0})) |
| 250 | | dfn2 11305 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ℕ =
(ℕ0 ∖ {0}) |
| 251 | 249, 250 | syl6eleqr 2712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → 𝑘 ∈ ℕ) |
| 252 | 251 | 0expd 13024 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0↑𝑘) = 0) |
| 253 | 252 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) |
| 254 | 245, 24 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈
ℕ) |
| 255 | 254 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ∈
ℂ) |
| 256 | 254 | nnne0d 11065 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (!‘𝑘) ≠ 0) |
| 257 | 255, 256 | div0d 10800 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → (0 / (!‘𝑘)) = 0) |
| 258 | 253, 257 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) ∧ 𝑘 ∈ ((0...𝑁) ∖ {0})) → ((0↑𝑘) / (!‘𝑘)) = 0) |
| 259 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (0...𝑁) ∈ Fin) |
| 260 | 228, 242,
258, 259 | fsumss 14456 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)((0↑𝑘) / (!‘𝑘))) |
| 261 | 222, 260 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘))) |
| 262 | | 0cn 10032 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℂ |
| 263 | 239 | sumsn 14475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℂ ∧ 1 ∈ ℂ) → Σ𝑘 ∈ {0} ((0↑𝑘) / (!‘𝑘)) = 1) |
| 264 | 262, 241,
263 | mp2an 708 |
. . . . . . . . . . . . . . . . . 18
⊢
Σ𝑘 ∈ {0}
((0↑𝑘) /
(!‘𝑘)) =
1 |
| 265 | 261, 264 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = 1) |
| 266 | 208, 265 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (𝑥 · 1)) |
| 267 | 192 | mulid1d 10057 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 · 1) = 𝑥) |
| 268 | 267 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑥 · 1) = 𝑥) |
| 269 | 266, 268 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = 𝑥) |
| 270 | 269 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · 𝑥)) |
| 271 | 211, 270 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 𝑥) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥))) |
| 272 | | ovexd 6680 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) ∈ V) |
| 273 | 207, 271,
95, 272 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥))) |
| 274 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → 𝑦 = 1) |
| 275 | 274 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) =
(⌊‘1)) |
| 276 | | flid 12609 |
. . . . . . . . . . . . . . . . . . 19
⊢ (1 ∈
ℤ → (⌊‘1) = 1) |
| 277 | 82, 276 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢
(⌊‘1) = 1 |
| 278 | 275, 277 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (⌊‘𝑦) = 1) |
| 279 | 278 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1...(⌊‘𝑦)) = (1...1)) |
| 280 | 279 | sumeq1d 14431 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁)) |
| 281 | 192 | div1d 10793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 / 1) = 𝑥) |
| 282 | 281 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 1) = 𝑥) |
| 283 | 282 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 1)) = (log‘𝑥)) |
| 284 | 283 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 285 | 196 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘𝑥)↑𝑁) ∈ ℂ) |
| 286 | 284, 285 | eqeltrd 2701 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) |
| 287 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 1 → (𝑥 / 𝑛) = (𝑥 / 1)) |
| 288 | 287 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 1 → (log‘(𝑥 / 𝑛)) = (log‘(𝑥 / 1))) |
| 289 | 288 | oveq1d 6665 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 1 → ((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 290 | 289 | fsum1 14476 |
. . . . . . . . . . . . . . . 16
⊢ ((1
∈ ℤ ∧ ((log‘(𝑥 / 1))↑𝑁) ∈ ℂ) → Σ𝑛 ∈
(1...1)((log‘(𝑥 /
𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 291 | 82, 286, 290 | sylancr 695 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...1)((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘(𝑥 / 1))↑𝑁)) |
| 292 | 280, 291,
284 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 293 | 274 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = (𝑥 / 1)) |
| 294 | 293, 282 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑥 / 𝑦) = 𝑥) |
| 295 | 294 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (log‘(𝑥 / 𝑦)) = (log‘𝑥)) |
| 296 | 295 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (log‘(𝑥 / 𝑦)) = (log‘𝑥)) |
| 297 | 296 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘(𝑥 / 𝑦))↑𝑘) = ((log‘𝑥)↑𝑘)) |
| 298 | 297 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = (((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 299 | 298 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 300 | 274, 299 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) |
| 301 | 203 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 302 | 301 | mulid2d 10058 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (1 · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 303 | 300, 302 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))) = Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) |
| 304 | 303 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘)))) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) |
| 305 | 292, 304 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → (Σ𝑛 ∈ (1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) |
| 306 | | ovexd 6680 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ V) |
| 307 | 207, 305,
179, 306 | fvmptd 6288 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1) = (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) |
| 308 | 273, 307 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · 𝑥)) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))) |
| 309 | 71, 73, 192 | subdird 10487 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥))) |
| 310 | 65 | adantrr 753 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) ∈ ℂ) |
| 311 | 213 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 𝑥 ≠ 0) |
| 312 | 310, 192,
311 | divcan1d 10802 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))))) |
| 313 | 312 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) · 𝑥) − ((!‘𝑁) · 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 314 | 309, 313 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) − ((!‘𝑁) · 𝑥))) |
| 315 | 206, 308,
314 | 3eqtr4d 2666 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1)) = ((((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) |
| 316 | 315 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) =
(abs‘((((Σ𝑛
∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥))) |
| 317 | 74, 192 | absmuld 14193 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁)) · 𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥))) |
| 318 | | rprege0 11847 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 ≤ 𝑥)) |
| 319 | 318 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) |
| 320 | | absid 14036 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) → (abs‘𝑥) = 𝑥) |
| 321 | 319, 320 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘𝑥) = 𝑥) |
| 322 | 321 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · (abs‘𝑥)) = ((abs‘(((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥)) |
| 323 | 316, 317,
322 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘𝑥) − ((𝑦 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑦))((log‘(𝑥 / 𝑛))↑𝑁) − ((!‘𝑁) · (𝑦 · Σ𝑘 ∈ (0...𝑁)(((log‘(𝑥 / 𝑦))↑𝑘) / (!‘𝑘))))))‘1))) =
((abs‘(((Σ𝑛
∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥)) |
| 324 | | 1cnd 10056 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 1 ∈ ℂ) |
| 325 | 295 | oveq1d 6665 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) ∧ 𝑦 = 1) → ((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 326 | 324, 325 | csbied 3560 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ⦋1 / 𝑦⦌((log‘(𝑥 / 𝑦))↑𝑁) = ((log‘𝑥)↑𝑁)) |
| 327 | 184, 323,
326 | 3brtr3d 4684 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁)) |
| 328 | 14 | adantrr 753 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((log‘𝑥)↑𝑁) ∈ ℝ) |
| 329 | 75, 328, 95 | lemuldivd 11921 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) · 𝑥) ≤ ((log‘𝑥)↑𝑁) ↔ (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥))) |
| 330 | 327, 329 | mpbid 222 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (((log‘𝑥)↑𝑁) / 𝑥)) |
| 331 | 76 | leabsd 14153 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 332 | 75, 76, 78, 330, 331 | letrd 10194 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 333 | 58 | adantrr 753 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (((log‘𝑥)↑𝑁) / 𝑥) ∈ ℂ) |
| 334 | 333 | subid1d 10381 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → ((((log‘𝑥)↑𝑁) / 𝑥) − 0) = (((log‘𝑥)↑𝑁) / 𝑥)) |
| 335 | 334 | fveq2d 6195 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0)) = (abs‘(((log‘𝑥)↑𝑁) / 𝑥))) |
| 336 | 332, 335 | breqtrrd 4681 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘(((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) − (!‘𝑁))) ≤ (abs‘((((log‘𝑥)↑𝑁) / 𝑥) − 0))) |
| 337 | 34, 35, 55, 58, 70, 336 | rlimsqzlem 14379 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥)) ⇝𝑟 (!‘𝑁)) |
| 338 | | divsubdir 10721 |
. . . . . 6
⊢
((((log‘𝑥)↑𝑁) ∈ ℂ ∧ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) |
| 339 | 60, 63, 67, 338 | syl3anc 1326 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) = ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) |
| 340 | 339 | mpteq2dva 4744 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)))) |
| 341 | | rerpdivcl 11861 |
. . . . . . 7
⊢
((((!‘𝑁)
· Σ𝑘 ∈
(0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) ∈ ℝ ∧ 𝑥 ∈ ℝ+) →
(((!‘𝑁) ·
Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ) |
| 342 | 28, 341 | sylancom 701 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) ∈ ℝ) |
| 343 | | divass 10703 |
. . . . . . . . . 10
⊢
(((!‘𝑁) ∈
ℂ ∧ Σ𝑘
∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))) |
| 344 | 61, 62, 67, 343 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥))) |
| 345 | 26 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 346 | 18, 68, 345, 69 | fsumdivc 14518 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) |
| 347 | 22 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((log‘𝑥)↑𝑘) ∈ ℂ) |
| 348 | 25 | nnrpd 11870 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℝ+) |
| 349 | 348 | rpcnne0d 11881 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((!‘𝑘) ∈ ℂ ∧ (!‘𝑘) ≠ 0)) |
| 350 | 67 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) |
| 351 | | divdiv32 10733 |
. . . . . . . . . . . . 13
⊢
((((log‘𝑥)↑𝑘) ∈ ℂ ∧ ((!‘𝑘) ∈ ℂ ∧
(!‘𝑘) ≠ 0) ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) →
((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 352 | 347, 349,
350, 351 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 353 | 352 | sumeq2dv 14433 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 354 | 346, 353 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥) = Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) |
| 355 | 354 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((!‘𝑁) · (Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)) / 𝑥)) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) |
| 356 | 344, 355 | eqtrd 2656 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) |
| 357 | 356 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) = (𝑥 ∈ ℝ+ ↦
((!‘𝑁) ·
Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))))) |
| 358 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → 𝑥 ∈ ℝ+) |
| 359 | 22, 358 | rerpdivcld 11903 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → (((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ) |
| 360 | 359, 25 | nndivred 11069 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) ∧ 𝑘 ∈ (0...𝑁)) → ((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 361 | 18, 360 | fsumrecl 14465 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 362 | | rpssre 11843 |
. . . . . . . . . 10
⊢
ℝ+ ⊆ ℝ |
| 363 | | rlimconst 14275 |
. . . . . . . . . 10
⊢
((ℝ+ ⊆ ℝ ∧ (!‘𝑁) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦
(!‘𝑁))
⇝𝑟 (!‘𝑁)) |
| 364 | 362, 35, 363 | sylancr 695 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (!‘𝑁)) ⇝𝑟
(!‘𝑁)) |
| 365 | 362 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ℝ+ ⊆ ℝ) |
| 366 | | fzfid 12772 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (0...𝑁) ∈
Fin) |
| 367 | 360 | anasss 679 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ (𝑥 ∈
ℝ+ ∧ 𝑘
∈ (0...𝑁))) →
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)) ∈ ℝ) |
| 368 | 359 | an32s 846 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(((log‘𝑥)↑𝑘) / 𝑥) ∈ ℝ) |
| 369 | 20 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 370 | 369, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℕ) |
| 371 | 370 | nnred 11035 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℝ) |
| 372 | 371 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(!‘𝑘) ∈
ℝ) |
| 373 | 369, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
(((log‘𝑥)↑𝑘) / 𝑥)) ⇝𝑟
0) |
| 374 | 370 | nncnd 11036 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ∈
ℂ) |
| 375 | | rlimconst 14275 |
. . . . . . . . . . . . . 14
⊢
((ℝ+ ⊆ ℝ ∧ (!‘𝑘) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦
(!‘𝑘))
⇝𝑟 (!‘𝑘)) |
| 376 | 362, 374,
375 | sylancr 695 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
(!‘𝑘))
⇝𝑟 (!‘𝑘)) |
| 377 | 370 | nnne0d 11065 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (!‘𝑘) ≠ 0) |
| 378 | 377 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) ∧ 𝑥 ∈ ℝ+) →
(!‘𝑘) ≠
0) |
| 379 | 368, 372,
373, 376, 377, 378 | rlimdiv 14376 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 (0 /
(!‘𝑘))) |
| 380 | 374, 377 | div0d 10800 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (0 / (!‘𝑘)) = 0) |
| 381 | 379, 380 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ (0...𝑁)) → (𝑥 ∈ ℝ+ ↦
((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟
0) |
| 382 | 365, 366,
367, 381 | fsumrlim 14543 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟 Σ𝑘 ∈ (0...𝑁)0) |
| 383 | | fzfi 12771 |
. . . . . . . . . . . 12
⊢
(0...𝑁) ∈
Fin |
| 384 | 383 | olci 406 |
. . . . . . . . . . 11
⊢
((0...𝑁) ⊆
(ℤ≥‘0) ∨ (0...𝑁) ∈ Fin) |
| 385 | | sumz 14453 |
. . . . . . . . . . 11
⊢
(((0...𝑁) ⊆
(ℤ≥‘0) ∨ (0...𝑁) ∈ Fin) → Σ𝑘 ∈ (0...𝑁)0 = 0) |
| 386 | 384, 385 | ax-mp 5 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...𝑁)0 =
0 |
| 387 | 382, 386 | syl6breq 4694 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘))) ⇝𝑟
0) |
| 388 | 17, 361, 364, 387 | rlimmul 14375 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟
((!‘𝑁) ·
0)) |
| 389 | 35 | mul01d 10235 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ((!‘𝑁)
· 0) = 0) |
| 390 | 388, 389 | breqtrd 4679 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((((log‘𝑥)↑𝑘) / 𝑥) / (!‘𝑘)))) ⇝𝑟
0) |
| 391 | 357, 390 | eqbrtrd 4675 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥)) ⇝𝑟
0) |
| 392 | 57, 342, 55, 391 | rlimsub 14374 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟 (0 −
0)) |
| 393 | | 0m0e0 11130 |
. . . . 5
⊢ (0
− 0) = 0 |
| 394 | 392, 393 | syl6breq 4694 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) / 𝑥) − (((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))) / 𝑥))) ⇝𝑟
0) |
| 395 | 340, 394 | eqbrtrd 4675 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) ⇝𝑟
0) |
| 396 | 31, 33, 337, 395 | rlimadd 14373 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) ⇝𝑟
((!‘𝑁) +
0)) |
| 397 | | divsubdir 10721 |
. . . . . 6
⊢
((Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) ∈ ℂ ∧ (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 398 | 59, 64, 67, 397 | syl3anc 1326 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 399 | 398 | oveq1d 6665 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) |
| 400 | 10, 2 | rerpdivcld 11903 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℝ) |
| 401 | 400 | recnd 10068 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) ∈ ℂ) |
| 402 | 33 | recnd 10068 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥) ∈ ℂ) |
| 403 | 401, 402 | npcand 10396 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥) − ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) |
| 404 | 399, 403 | eqtrd 2656 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈
ℝ+) → (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) |
| 405 | 404 | mpteq2dva 4744 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) − (((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘))))) / 𝑥) + ((((log‘𝑥)↑𝑁) − ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)(((log‘𝑥)↑𝑘) / (!‘𝑘)))) / 𝑥))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥))) |
| 406 | 35 | addid1d 10236 |
. 2
⊢ (𝑁 ∈ ℕ0
→ ((!‘𝑁) + 0) =
(!‘𝑁)) |
| 407 | 396, 405,
406 | 3brtr3d 4684 |
1
⊢ (𝑁 ∈ ℕ0
→ (𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑𝑁) / 𝑥)) ⇝𝑟 (!‘𝑁)) |