MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemn Structured version   Visualization version   GIF version

Theorem pntlemn 25289
Description: Lemma for pnt 25303. The "naive" base bound, which we will slightly improve. (Contributed by Mario Carneiro, 13-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
Assertion
Ref Expression
pntlemn ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Distinct variable groups:   𝑧,𝐶   𝑧,𝐽   𝑧,𝐿   𝑧,𝐾   𝑧,𝑀   𝑧,𝑁   𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑎,𝐸   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧,𝑎)   𝐴(𝑧,𝑎)   𝐵(𝑧,𝑎)   𝐶(𝑎)   𝐷(𝑧,𝑎)   𝑅(𝑎)   𝑈(𝑎)   𝐹(𝑧,𝑎)   𝐽(𝑎)   𝐾(𝑎)   𝐿(𝑎)   𝑀(𝑎)   𝑁(𝑎)   𝑊(𝑎)   𝑋(𝑎)   𝑌(𝑎)   𝑍(𝑎)

Proof of Theorem pntlemn
StepHypRef Expression
1 pntlem1.u . . . . . 6 (𝜑𝑈 ∈ ℝ+)
21adantr 481 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ+)
32rpred 11872 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑈 ∈ ℝ)
4 simprl 794 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℕ)
53, 4nndivred 11069 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑈 / 𝐽) ∈ ℝ)
6 pntlem1.r . . . . . . . . . . 11 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
7 pntlem1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ+)
8 pntlem1.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ+)
9 pntlem1.l . . . . . . . . . . 11 (𝜑𝐿 ∈ (0(,)1))
10 pntlem1.d . . . . . . . . . . 11 𝐷 = (𝐴 + 1)
11 pntlem1.f . . . . . . . . . . 11 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
12 pntlem1.u2 . . . . . . . . . . 11 (𝜑𝑈𝐴)
13 pntlem1.e . . . . . . . . . . 11 𝐸 = (𝑈 / 𝐷)
14 pntlem1.k . . . . . . . . . . 11 𝐾 = (exp‘(𝐵 / 𝐸))
15 pntlem1.y . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
16 pntlem1.x . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
17 pntlem1.c . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ+)
18 pntlem1.w . . . . . . . . . . 11 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
19 pntlem1.z . . . . . . . . . . 11 (𝜑𝑍 ∈ (𝑊[,)+∞))
206, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19pntlemb 25286 . . . . . . . . . 10 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
2120simp1d 1073 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ+)
2221adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ+)
234nnrpd 11870 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ+)
2422, 23rpdivcld 11889 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ+)
256pntrf 25252 . . . . . . . 8 𝑅:ℝ+⟶ℝ
2625ffvelrni 6358 . . . . . . 7 ((𝑍 / 𝐽) ∈ ℝ+ → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2724, 26syl 17 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℝ)
2827, 22rerpdivcld 11903 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℝ)
2928recnd 10068 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / 𝑍) ∈ ℂ)
3029abscld 14175 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ∈ ℝ)
315, 30resubcld 10458 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ∈ ℝ)
3223relogcld 24369 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘𝐽) ∈ ℝ)
3327recnd 10068 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑅‘(𝑍 / 𝐽)) ∈ ℂ)
3422rpcnne0d 11881 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
3523rpcnne0d 11881 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0))
36 divdiv2 10737 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0) ∧ (𝐽 ∈ ℂ ∧ 𝐽 ≠ 0)) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
3733, 34, 35, 36syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍))
384nncnd 11036 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℂ)
39 div23 10704 . . . . . . . . 9 (((𝑅‘(𝑍 / 𝐽)) ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4033, 38, 34, 39syl3anc 1326 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((𝑅‘(𝑍 / 𝐽)) · 𝐽) / 𝑍) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4137, 40eqtrd 2656 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)) = (((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽))
4241fveq2d 6195 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)))
4329, 38absmuld 14193 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘(((𝑅‘(𝑍 / 𝐽)) / 𝑍) · 𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)))
4423rprege0d 11879 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝐽 ∈ ℝ ∧ 0 ≤ 𝐽))
45 absid 14036 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽) → (abs‘𝐽) = 𝐽)
4644, 45syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘𝐽) = 𝐽)
4746oveq2d 6666 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · (abs‘𝐽)) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4842, 43, 473eqtrd 2660 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) = ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽))
4924rpred 11872 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ ℝ)
50 simprr 796 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ≤ (𝑍 / 𝑌))
5123rpred 11872 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝐽 ∈ ℝ)
5222rpred 11872 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑍 ∈ ℝ)
5315simpld 475 . . . . . . . . . . 11 (𝜑𝑌 ∈ ℝ+)
5453adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ+)
5551, 52, 54lemuldiv2d 11922 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝐽 ≤ (𝑍 / 𝑌)))
5650, 55mpbird 247 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑌 · 𝐽) ≤ 𝑍)
5754rpred 11872 . . . . . . . . 9 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ∈ ℝ)
5857, 52, 23lemuldivd 11921 . . . . . . . 8 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑌 · 𝐽) ≤ 𝑍𝑌 ≤ (𝑍 / 𝐽)))
5956, 58mpbid 222 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 𝑌 ≤ (𝑍 / 𝐽))
60 elicopnf 12269 . . . . . . . 8 (𝑌 ∈ ℝ → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6157, 60syl 17 . . . . . . 7 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) ↔ ((𝑍 / 𝐽) ∈ ℝ ∧ 𝑌 ≤ (𝑍 / 𝐽))))
6249, 59, 61mpbir2and 957 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (𝑍 / 𝐽) ∈ (𝑌[,)+∞))
63 pntlem1.U . . . . . . 7 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
6463adantr 481 . . . . . 6 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
65 fveq2 6191 . . . . . . . . . 10 (𝑧 = (𝑍 / 𝐽) → (𝑅𝑧) = (𝑅‘(𝑍 / 𝐽)))
66 id 22 . . . . . . . . . 10 (𝑧 = (𝑍 / 𝐽) → 𝑧 = (𝑍 / 𝐽))
6765, 66oveq12d 6668 . . . . . . . . 9 (𝑧 = (𝑍 / 𝐽) → ((𝑅𝑧) / 𝑧) = ((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽)))
6867fveq2d 6195 . . . . . . . 8 (𝑧 = (𝑍 / 𝐽) → (abs‘((𝑅𝑧) / 𝑧)) = (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))))
6968breq1d 4663 . . . . . . 7 (𝑧 = (𝑍 / 𝐽) → ((abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
7069rspcv 3305 . . . . . 6 ((𝑍 / 𝐽) ∈ (𝑌[,)+∞) → (∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈 → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈))
7162, 64, 70sylc 65 . . . . 5 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / (𝑍 / 𝐽))) ≤ 𝑈)
7248, 71eqbrtrrd 4677 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → ((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈)
7330, 3, 23lemuldivd 11921 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (((abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) · 𝐽) ≤ 𝑈 ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7472, 73mpbid 222 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽))
755, 30subge0d 10617 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) ↔ (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍)) ≤ (𝑈 / 𝐽)))
7674, 75mpbird 247 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ ((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))))
77 log1 24332 . . 3 (log‘1) = 0
78 nnge1 11046 . . . . 5 (𝐽 ∈ ℕ → 1 ≤ 𝐽)
7978ad2antrl 764 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 1 ≤ 𝐽)
80 1rp 11836 . . . . 5 1 ∈ ℝ+
81 logleb 24349 . . . . 5 ((1 ∈ ℝ+𝐽 ∈ ℝ+) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8280, 23, 81sylancr 695 . . . 4 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (1 ≤ 𝐽 ↔ (log‘1) ≤ (log‘𝐽)))
8379, 82mpbid 222 . . 3 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → (log‘1) ≤ (log‘𝐽))
8477, 83syl5eqbrr 4689 . 2 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (log‘𝐽))
8531, 32, 76, 84mulge0d 10604 1 ((𝜑 ∧ (𝐽 ∈ ℕ ∧ 𝐽 ≤ (𝑍 / 𝑌))) → 0 ≤ (((𝑈 / 𝐽) − (abs‘((𝑅‘(𝑍 / 𝐽)) / 𝑍))) · (log‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  3c3 11071  4c4 11072  cdc 11493  +crp 11832  (,)cioo 12175  [,)cico 12177  cfl 12591  cexp 12860  csqrt 13973  abscabs 13974  expce 14792  eceu 14793  logclog 24301  ψcchp 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-pc 15542  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-vma 24824  df-chp 24825
This theorem is referenced by:  pntlemj  25292  pntlemf  25294
  Copyright terms: Public domain W3C validator