| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgsdir2 | Structured version Visualization version Unicode version | ||
| Description: The Legendre symbol is
completely multiplicative at |
| Ref | Expression |
|---|---|
| lgsdir2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 10032 |
. . . . . 6
| |
| 2 | ax-1cn 9994 |
. . . . . . 7
| |
| 3 | neg1cn 11124 |
. . . . . . 7
| |
| 4 | 2, 3 | keepel 4155 |
. . . . . 6
|
| 5 | 1, 4 | keepel 4155 |
. . . . 5
|
| 6 | 5 | mul02i 10225 |
. . . 4
|
| 7 | iftrue 4092 |
. . . . . 6
| |
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | 8 | oveq1d 6665 |
. . . 4
|
| 10 | 2z 11409 |
. . . . . . 7
| |
| 11 | dvdsmultr1 15019 |
. . . . . . 7
| |
| 12 | 10, 11 | mp3an1 1411 |
. . . . . 6
|
| 13 | 12 | imp 445 |
. . . . 5
|
| 14 | 13 | iftrued 4094 |
. . . 4
|
| 15 | 6, 9, 14 | 3eqtr4a 2682 |
. . 3
|
| 16 | 2, 3 | keepel 4155 |
. . . . . 6
|
| 17 | 1, 16 | keepel 4155 |
. . . . 5
|
| 18 | 17 | mul01i 10226 |
. . . 4
|
| 19 | iftrue 4092 |
. . . . . 6
| |
| 20 | 19 | adantl 482 |
. . . . 5
|
| 21 | 20 | oveq2d 6666 |
. . . 4
|
| 22 | dvdsmultr2 15021 |
. . . . . . 7
| |
| 23 | 10, 22 | mp3an1 1411 |
. . . . . 6
|
| 24 | 23 | imp 445 |
. . . . 5
|
| 25 | 24 | iftrued 4094 |
. . . 4
|
| 26 | 18, 21, 25 | 3eqtr4a 2682 |
. . 3
|
| 27 | 4 | mulid2i 10043 |
. . . . . 6
|
| 28 | iftrue 4092 |
. . . . . . . 8
| |
| 29 | 28 | adantl 482 |
. . . . . . 7
|
| 30 | 29 | oveq1d 6665 |
. . . . . 6
|
| 31 | lgsdir2lem4 25053 |
. . . . . . . 8
| |
| 32 | 31 | adantlr 751 |
. . . . . . 7
|
| 33 | 32 | ifbid 4108 |
. . . . . 6
|
| 34 | 27, 30, 33 | 3eqtr4a 2682 |
. . . . 5
|
| 35 | 16 | mulid1i 10042 |
. . . . . 6
|
| 36 | iftrue 4092 |
. . . . . . . 8
| |
| 37 | 36 | adantl 482 |
. . . . . . 7
|
| 38 | 37 | oveq2d 6666 |
. . . . . 6
|
| 39 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 40 | zcn 11382 |
. . . . . . . . . . . 12
| |
| 41 | mulcom 10022 |
. . . . . . . . . . . 12
| |
| 42 | 39, 40, 41 | syl2an 494 |
. . . . . . . . . . 11
|
| 43 | 42 | ad2antrr 762 |
. . . . . . . . . 10
|
| 44 | 43 | oveq1d 6665 |
. . . . . . . . 9
|
| 45 | 44 | eleq1d 2686 |
. . . . . . . 8
|
| 46 | lgsdir2lem4 25053 |
. . . . . . . . . 10
| |
| 47 | 46 | ancom1s 847 |
. . . . . . . . 9
|
| 48 | 47 | adantlr 751 |
. . . . . . . 8
|
| 49 | 45, 48 | bitrd 268 |
. . . . . . 7
|
| 50 | 49 | ifbid 4108 |
. . . . . 6
|
| 51 | 35, 38, 50 | 3eqtr4a 2682 |
. . . . 5
|
| 52 | neg1mulneg1e1 11245 |
. . . . . 6
| |
| 53 | iffalse 4095 |
. . . . . . . 8
| |
| 54 | iffalse 4095 |
. . . . . . . 8
| |
| 55 | 53, 54 | oveqan12d 6669 |
. . . . . . 7
|
| 56 | 55 | adantl 482 |
. . . . . 6
|
| 57 | lgsdir2lem3 25052 |
. . . . . . . . . . . 12
| |
| 58 | 57 | ad2ant2r 783 |
. . . . . . . . . . 11
|
| 59 | elun 3753 |
. . . . . . . . . . 11
| |
| 60 | 58, 59 | sylib 208 |
. . . . . . . . . 10
|
| 61 | 60 | orcanai 952 |
. . . . . . . . 9
|
| 62 | lgsdir2lem3 25052 |
. . . . . . . . . . . 12
| |
| 63 | 62 | ad2ant2l 782 |
. . . . . . . . . . 11
|
| 64 | elun 3753 |
. . . . . . . . . . 11
| |
| 65 | 63, 64 | sylib 208 |
. . . . . . . . . 10
|
| 66 | 65 | orcanai 952 |
. . . . . . . . 9
|
| 67 | 61, 66 | anim12dan 882 |
. . . . . . . 8
|
| 68 | lgsdir2lem5 25054 |
. . . . . . . . 9
| |
| 69 | 68 | adantlr 751 |
. . . . . . . 8
|
| 70 | 67, 69 | syldan 487 |
. . . . . . 7
|
| 71 | 70 | iftrued 4094 |
. . . . . 6
|
| 72 | 52, 56, 71 | 3eqtr4a 2682 |
. . . . 5
|
| 73 | 34, 51, 72 | pm2.61ddan 833 |
. . . 4
|
| 74 | iffalse 4095 |
. . . . . 6
| |
| 75 | iffalse 4095 |
. . . . . 6
| |
| 76 | 74, 75 | oveqan12d 6669 |
. . . . 5
|
| 77 | 76 | adantl 482 |
. . . 4
|
| 78 | ioran 511 |
. . . . . 6
| |
| 79 | 2prm 15405 |
. . . . . . . . 9
| |
| 80 | euclemma 15425 |
. . . . . . . . 9
| |
| 81 | 79, 80 | mp3an1 1411 |
. . . . . . . 8
|
| 82 | 81 | notbid 308 |
. . . . . . 7
|
| 83 | 82 | biimpar 502 |
. . . . . 6
|
| 84 | 78, 83 | sylan2br 493 |
. . . . 5
|
| 85 | iffalse 4095 |
. . . . 5
| |
| 86 | 84, 85 | syl 17 |
. . . 4
|
| 87 | 73, 77, 86 | 3eqtr4d 2666 |
. . 3
|
| 88 | 15, 26, 87 | pm2.61ddan 833 |
. 2
|
| 89 | lgs2 25039 |
. . 3
| |
| 90 | lgs2 25039 |
. . 3
| |
| 91 | 89, 90 | oveqan12d 6669 |
. 2
|
| 92 | zmulcl 11426 |
. . 3
| |
| 93 | lgs2 25039 |
. . 3
| |
| 94 | 92, 93 | syl 17 |
. 2
|
| 95 | 88, 91, 94 | 3eqtr4rd 2667 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-fz 12327 df-fzo 12466 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-prm 15386 df-phi 15471 df-pc 15542 df-lgs 25020 |
| This theorem is referenced by: lgsdirprm 25056 |
| Copyright terms: Public domain | W3C validator |