Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincfsuppcl Structured version   Visualization version   GIF version

Theorem lincfsuppcl 42202
Description: A linear combination of vectors (with finite support) is a vector. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincfsuppcl.b 𝐵 = (Base‘𝑀)
lincfsuppcl.r 𝑅 = (Scalar‘𝑀)
lincfsuppcl.s 𝑆 = (Base‘𝑅)
lincfsuppcl.0 0 = (0g𝑅)
Assertion
Ref Expression
lincfsuppcl ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)

Proof of Theorem lincfsuppcl
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ LMod)
2 lincfsuppcl.s . . . . . . . . 9 𝑆 = (Base‘𝑅)
3 lincfsuppcl.r . . . . . . . . . 10 𝑅 = (Scalar‘𝑀)
43fveq2i 6194 . . . . . . . . 9 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
52, 4eqtri 2644 . . . . . . . 8 𝑆 = (Base‘(Scalar‘𝑀))
65oveq1i 6660 . . . . . . 7 (𝑆𝑚 𝑉) = ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)
76eleq2i 2693 . . . . . 6 (𝐹 ∈ (𝑆𝑚 𝑉) ↔ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
87biimpi 206 . . . . 5 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
98adantr 481 . . . 4 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
1093ad2ant3 1084 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉))
11 elpwg 4166 . . . . . 6 (𝑉𝑊 → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
12 lincfsuppcl.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
1312a1i 11 . . . . . . . 8 (𝑉𝑊𝐵 = (Base‘𝑀))
1413eqcomd 2628 . . . . . . 7 (𝑉𝑊 → (Base‘𝑀) = 𝐵)
1514sseq2d 3633 . . . . . 6 (𝑉𝑊 → (𝑉 ⊆ (Base‘𝑀) ↔ 𝑉𝐵))
1611, 15bitr2d 269 . . . . 5 (𝑉𝑊 → (𝑉𝐵𝑉 ∈ 𝒫 (Base‘𝑀)))
1716biimpa 501 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉 ∈ 𝒫 (Base‘𝑀))
18173ad2ant2 1083 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉 ∈ 𝒫 (Base‘𝑀))
19 lincval 42198 . . 3 ((𝑀 ∈ LMod ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉) ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
201, 10, 18, 19syl3anc 1326 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) = (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))))
21 eqid 2622 . . 3 (0g𝑀) = (0g𝑀)
22 lmodcmn 18911 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ CMnd)
23223ad2ant1 1082 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑀 ∈ CMnd)
24 simpl 473 . . . 4 ((𝑉𝑊𝑉𝐵) → 𝑉𝑊)
25243ad2ant2 1083 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝑉𝑊)
261adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑀 ∈ LMod)
27 elmapi 7879 . . . . . . . . 9 (𝐹 ∈ (𝑆𝑚 𝑉) → 𝐹:𝑉𝑆)
28 ffvelrn 6357 . . . . . . . . . 10 ((𝐹:𝑉𝑆𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
2928ex 450 . . . . . . . . 9 (𝐹:𝑉𝑆 → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3027, 29syl 17 . . . . . . . 8 (𝐹 ∈ (𝑆𝑚 𝑉) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3130adantr 481 . . . . . . 7 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
32313ad2ant3 1084 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 → (𝐹𝑣) ∈ 𝑆))
3332imp 445 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ 𝑆)
34 ssel 3597 . . . . . . . 8 (𝑉𝐵 → (𝑣𝑉𝑣𝐵))
3534adantl 482 . . . . . . 7 ((𝑉𝑊𝑉𝐵) → (𝑣𝑉𝑣𝐵))
36353ad2ant2 1083 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉𝑣𝐵))
3736imp 445 . . . . 5 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → 𝑣𝐵)
38 eqid 2622 . . . . . 6 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3912, 3, 38, 2lmodvscl 18880 . . . . 5 ((𝑀 ∈ LMod ∧ (𝐹𝑣) ∈ 𝑆𝑣𝐵) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
4026, 33, 37, 39syl3anc 1326 . . . 4 (((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) ∧ 𝑣𝑉) → ((𝐹𝑣)( ·𝑠𝑀)𝑣) ∈ 𝐵)
41 eqid 2622 . . . 4 (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) = (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))
4240, 41fmptd 6385 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)):𝑉𝐵)
43 simpl 473 . . . . 5 ((𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 ) → 𝐹 ∈ (𝑆𝑚 𝑉))
44433ad2ant3 1084 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 ∈ (𝑆𝑚 𝑉))
45 simp3r 1090 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp 0 )
46 lincfsuppcl.0 . . . . 5 0 = (0g𝑅)
4745, 46syl6breq 4694 . . . 4 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → 𝐹 finSupp (0g𝑅))
483, 2scmfsupp 42159 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp (0g𝑅)) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
491, 18, 44, 47, 48syl211anc 1332 . . 3 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣)) finSupp (0g𝑀))
5012, 21, 23, 25, 42, 49gsumcl 18316 . 2 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝑀 Σg (𝑣𝑉 ↦ ((𝐹𝑣)( ·𝑠𝑀)𝑣))) ∈ 𝐵)
5120, 50eqeltrd 2701 1 ((𝑀 ∈ LMod ∧ (𝑉𝑊𝑉𝐵) ∧ (𝐹 ∈ (𝑆𝑚 𝑉) ∧ 𝐹 finSupp 0 )) → (𝐹( linC ‘𝑀)𝑉) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857   finSupp cfsupp 8275  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  0gc0g 16100   Σg cgsu 16101  CMndccmn 18193  LModclmod 18863   linC clinc 42193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-linc 42195
This theorem is referenced by:  lindslinindimp2lem4  42250
  Copyright terms: Public domain W3C validator