Proof of Theorem lindslinindimp2lem4
| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ LMod) |
| 2 | 1 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑀 ∈ LMod) |
| 3 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ⊆ (Base‘𝑀)) |
| 4 | | elpwg 4166 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
| 5 | 4 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))) |
| 6 | 3, 5 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀)) |
| 7 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝑆) |
| 8 | 7 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → 𝑥 ∈ 𝑆) |
| 9 | 2, 6, 8 | 3jca 1242 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 10 | 9 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 11 | | simpl 473 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 )) |
| 12 | | lindslinind.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})) |
| 13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) |
| 14 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝑀) =
(Base‘𝑀) |
| 15 | | lindslinind.r |
. . . . . . . . . . 11
⊢ 𝑅 = (Scalar‘𝑀) |
| 16 | | lindslinind.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝑅) |
| 17 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
| 18 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(+g‘𝑀) = (+g‘𝑀) |
| 19 | | lindslinind.0 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘𝑅) |
| 20 | 14, 15, 16, 17, 18, 19 | lincdifsn 42213 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 21 | 10, 11, 13, 20 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 22 | 21 | eqeq1d 2624 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 23 | | lmodgrp 18870 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
| 24 | 23 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → 𝑀 ∈ Grp) |
| 25 | 24 | ad2antrl 764 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ Grp) |
| 26 | 1 | ad2antrl 764 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑀 ∈ LMod) |
| 27 | | elmapi 7879 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → 𝑓:𝑆⟶𝐵) |
| 28 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:𝑆⟶𝐵 ∧ 𝑥 ∈ 𝑆) → (𝑓‘𝑥) ∈ 𝐵) |
| 29 | 28 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ 𝑆 → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
| 30 | 29 | ad2antll 765 |
. . . . . . . . . . . . . 14
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓:𝑆⟶𝐵 → (𝑓‘𝑥) ∈ 𝐵)) |
| 31 | 30 | com12 32 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑆⟶𝐵 → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 32 | 27, 31 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 33 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 34 | 33 | imp 445 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓‘𝑥) ∈ 𝐵) |
| 35 | | ssel2 3598 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ (Base‘𝑀)) |
| 36 | 35 | ad2antll 765 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ (Base‘𝑀)) |
| 37 | 14, 15, 17, 16 | lmodvscl 18880 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ (𝑓‘𝑥) ∈ 𝐵 ∧ 𝑥 ∈ (Base‘𝑀)) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 38 | 26, 34, 36, 37 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀)) |
| 39 | | difexg 4808 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝑉 → (𝑆 ∖ {𝑥}) ∈ V) |
| 40 | 39 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ V) |
| 41 | | ssdifss 3741 |
. . . . . . . . . . . . 13
⊢ (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
| 42 | 41 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) |
| 43 | 40, 42 | jca 554 |
. . . . . . . . . . 11
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 44 | 43 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 45 | | simprl 794 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod)) |
| 46 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝑀)) |
| 47 | 46 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑆 ⊆ (Base‘𝑀)) |
| 48 | 7 | ad2antll 765 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑥 ∈ 𝑆) |
| 49 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵 ↑𝑚 𝑆)) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝑓 ∈ (𝐵 ↑𝑚 𝑆)) |
| 51 | | lindslinind.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (0g‘𝑀) |
| 52 | | lindslinind.y |
. . . . . . . . . . . . 13
⊢ 𝑌 = ((invg‘𝑅)‘(𝑓‘𝑥)) |
| 53 | 15, 16, 19, 51, 52, 12 | lindslinindimp2lem2 42248 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆 ∧ 𝑓 ∈ (𝐵 ↑𝑚 𝑆))) → 𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥}))) |
| 54 | 45, 47, 48, 50, 53 | syl13anc 1328 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥}))) |
| 55 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 56 | 55 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) |
| 57 | 15, 16, 19, 51, 52, 12 | lindslinindimp2lem3 42249 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 ) |
| 58 | 45, 56, 11, 57 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 finSupp 0 ) |
| 59 | 54, 58 | jca 554 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) |
| 60 | 14, 15, 16, 19 | lincfsuppcl 42202 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵 ↑𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
| 61 | 26, 44, 59, 60 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) |
| 62 | | eqid 2622 |
. . . . . . . . . 10
⊢
(invg‘𝑀) = (invg‘𝑀) |
| 63 | 14, 18, 51, 62 | grpinvid2 17471 |
. . . . . . . . 9
⊢ ((𝑀 ∈ Grp ∧ ((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 64 | 25, 38, 61, 63 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g‘𝑀)((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = 𝑍)) |
| 65 | 22, 64 | bitr4d 271 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})))) |
| 66 | | eqcom 2629 |
. . . . . . . 8
⊢
(((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥))) |
| 67 | 15 | fveq2i 6194 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘(Scalar‘𝑀)) |
| 68 | 16, 67 | eqtri 2644 |
. . . . . . . . . . . . 13
⊢ 𝐵 =
(Base‘(Scalar‘𝑀)) |
| 69 | 68 | oveq1i 6660 |
. . . . . . . . . . . 12
⊢ (𝐵 ↑𝑚
(𝑆 ∖ {𝑥})) =
((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) |
| 70 | 54, 69 | syl6eleq 2711 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚
(𝑆 ∖ {𝑥}))) |
| 71 | | elpwg 4166 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 72 | 40, 71 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))) |
| 73 | 42, 72 | mpbird 247 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
| 74 | 73 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) |
| 75 | | lincval 42198 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈
((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 76 | 26, 70, 74, 75 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 77 | 76 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)))) |
| 78 | 12 | fveq1i 6192 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) |
| 79 | 78 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)) |
| 80 | | fvres 6207 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
| 81 | 80 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓‘𝑦)) |
| 82 | 79, 81 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺‘𝑦) = (𝑓‘𝑦)) |
| 83 | 82 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦) = ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)) |
| 84 | 83 | mpteq2dva 4744 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) |
| 85 | 84 | oveq2d 6666 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦)))) |
| 86 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 87 | 28 | ex 450 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓:𝑆⟶𝐵 → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) ∈ 𝐵)) |
| 88 | 27, 87 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → (𝑥 ∈ 𝑆 → (𝑓‘𝑥) ∈ 𝐵)) |
| 89 | 88 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑆 → (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → (𝑓‘𝑥) ∈ 𝐵)) |
| 90 | 89 | ad2antll 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → (𝑓‘𝑥) ∈ 𝐵)) |
| 91 | 90 | com12 32 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 92 | 91 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑓‘𝑥) ∈ 𝐵)) |
| 93 | 92 | imp 445 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (𝑓‘𝑥) ∈ 𝐵) |
| 94 | 14, 15, 17, 62, 16, 86, 26, 36, 93 | lmodvsneg 18907 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥)) |
| 95 | 52 | eqcomi 2631 |
. . . . . . . . . . . . . 14
⊢
((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌 |
| 96 | 95 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑅)‘(𝑓‘𝑥)) = 𝑌) |
| 97 | 96 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑅)‘(𝑓‘𝑥))( ·𝑠
‘𝑀)𝑥) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
| 98 | 94, 97 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝑌( ·𝑠
‘𝑀)𝑥)) |
| 99 | 85, 98 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 100 | 99 | biimpd 219 |
. . . . . . . . 9
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺‘𝑦)( ·𝑠
‘𝑀)𝑦))) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 101 | 77, 100 | sylbid 230 |
. . . . . . . 8
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 102 | 66, 101 | syl5bi 232 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → (((invg‘𝑀)‘((𝑓‘𝑥)( ·𝑠
‘𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 103 | 65, 102 | sylbid 230 |
. . . . . 6
⊢ (((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 104 | 103 | ex 450 |
. . . . 5
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
| 105 | 104 | com23 86 |
. . . 4
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)))) |
| 106 | 105 | 3impia 1261 |
. . 3
⊢ ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 107 | 106 | com12 32 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆)) → ((𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥))) |
| 108 | 107 | 3impia 1261 |
1
⊢ (((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥 ∈ 𝑆) ∧ (𝑓 ∈ (𝐵 ↑𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓‘𝑦)( ·𝑠
‘𝑀)𝑦))) = (𝑌( ·𝑠
‘𝑀)𝑥)) |