Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   Unicode version

Theorem lsat0cv 34320
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o  |-  .0.  =  ( 0g `  W )
lsat0cv.s  |-  S  =  ( LSubSp `  W )
lsat0cv.a  |-  A  =  (LSAtoms `  W )
lsat0cv.c  |-  C  =  (  <oLL  `  W )
lsat0cv.w  |-  ( ph  ->  W  e.  LVec )
lsat0cv.u  |-  ( ph  ->  U  e.  S )
Assertion
Ref Expression
lsat0cv  |-  ( ph  ->  ( U  e.  A  <->  {  .0.  } C U ) )

Proof of Theorem lsat0cv
Dummy variables  x  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3  |-  .0.  =  ( 0g `  W )
2 lsat0cv.a . . 3  |-  A  =  (LSAtoms `  W )
3 lsat0cv.c . . 3  |-  C  =  (  <oLL  `  W )
4 lsat0cv.w . . . 4  |-  ( ph  ->  W  e.  LVec )
54adantr 481 . . 3  |-  ( (
ph  /\  U  e.  A )  ->  W  e.  LVec )
6 simpr 477 . . 3  |-  ( (
ph  /\  U  e.  A )  ->  U  e.  A )
71, 2, 3, 5, 6lsatcv0 34318 . 2  |-  ( (
ph  /\  U  e.  A )  ->  {  .0.  } C U )
8 lsat0cv.s . . . . . . 7  |-  S  =  ( LSubSp `  W )
9 lveclmod 19106 . . . . . . . . 9  |-  ( W  e.  LVec  ->  W  e. 
LMod )
104, 9syl 17 . . . . . . . 8  |-  ( ph  ->  W  e.  LMod )
1110adantr 481 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  W  e.  LMod )
121, 8lsssn0 18948 . . . . . . . . 9  |-  ( W  e.  LMod  ->  {  .0.  }  e.  S )
1310, 12syl 17 . . . . . . . 8  |-  ( ph  ->  {  .0.  }  e.  S )
1413adantr 481 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  }  e.  S
)
15 lsat0cv.u . . . . . . . 8  |-  ( ph  ->  U  e.  S )
1615adantr 481 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  U  e.  S )
17 simpr 477 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  } C U )
188, 3, 11, 14, 16, 17lcvpss 34311 . . . . . 6  |-  ( (
ph  /\  {  .0.  } C U )  ->  {  .0.  }  C.  U
)
19 pssnel 4039 . . . . . 6  |-  ( {  .0.  }  C.  U  ->  E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )
2018, 19syl 17 . . . . 5  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )
2115ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  U  e.  S )
22 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  U )
23 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  W )  =  (
Base `  W )
2423, 8lssel 18938 . . . . . . . . . . 11  |-  ( ( U  e.  S  /\  x  e.  U )  ->  x  e.  ( Base `  W ) )
2521, 22, 24syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  ( Base `  W )
)
26 velsn 4193 . . . . . . . . . . . . . 14  |-  ( x  e.  {  .0.  }  <->  x  =  .0.  )
2726biimpri 218 . . . . . . . . . . . . 13  |-  ( x  =  .0.  ->  x  e.  {  .0.  } )
2827necon3bi 2820 . . . . . . . . . . . 12  |-  ( -.  x  e.  {  .0.  }  ->  x  =/=  .0.  )
2928adantl 482 . . . . . . . . . . 11  |-  ( ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  x  =/=  .0.  )
3029adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  =/=  .0.  )
31 eldifsn 4317 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  <->  ( x  e.  ( Base `  W
)  /\  x  =/=  .0.  ) )
3225, 30, 31sylanbrc 698 . . . . . . . . 9  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )
3332, 22jca 554 . . . . . . . 8  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  ( x  e.  U  /\  -.  x  e.  {  .0.  } ) )  ->  ( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) )
3433ex 450 . . . . . . 7  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  ( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) ) )
3534eximdv 1846 . . . . . 6  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  E. x
( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) ) )
36 df-rex 2918 . . . . . 6  |-  ( E. x  e.  ( (
Base `  W )  \  {  .0.  } ) x  e.  U  <->  E. x
( x  e.  ( ( Base `  W
)  \  {  .0.  } )  /\  x  e.  U ) )
3735, 36syl6ibr 242 . . . . 5  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x ( x  e.  U  /\  -.  x  e.  {  .0.  } )  ->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) x  e.  U
) )
3820, 37mpd 15 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x  e.  (
( Base `  W )  \  {  .0.  } ) x  e.  U )
39 simpllr 799 . . . . . . . 8  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  {  .0.  } C U )
408, 3, 4, 13, 15lcvbr2 34309 . . . . . . . . . . 11  |-  ( ph  ->  ( {  .0.  } C U  <->  ( {  .0.  } 
C.  U  /\  A. s  e.  S  (
( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4140adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( {  .0.  } C U  <->  ( {  .0.  } 
C.  U  /\  A. s  e.  S  (
( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4241ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  ( {  .0.  } C U  <-> 
( {  .0.  }  C.  U  /\  A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) ) ) )
4310ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  W  e.  LMod )
4443ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  W  e.  LMod )
45 eldifi 3732 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  ->  x  e.  ( Base `  W
) )
4645adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  x  e.  ( Base `  W
) )
4746ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  e.  ( Base `  W ) )
48 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( LSpan `  W )  =  (
LSpan `  W )
4923, 8, 48lspsncl 18977 . . . . . . . . . . . . . . 15  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
( LSpan `  W ) `  { x } )  e.  S )
5044, 47, 49syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W
) `  { x } )  e.  S
)
511, 8lss0ss 18949 . . . . . . . . . . . . . 14  |-  ( ( W  e.  LMod  /\  (
( LSpan `  W ) `  { x } )  e.  S )  ->  {  .0.  }  C_  (
( LSpan `  W ) `  { x } ) )
5244, 50, 51syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  C_  ( ( LSpan `  W
) `  { x } ) )
53 eldifsni 4320 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( Base `  W )  \  {  .0.  } )  ->  x  =/=  .0.  )
5453adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  x  =/=  .0.  )
5554ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  =/=  .0.  )
5623, 1, 48lspsneq0 19012 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  W
) )  ->  (
( ( LSpan `  W
) `  { x } )  =  {  .0.  }  <->  x  =  .0.  ) )
5744, 47, 56syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( ( LSpan `  W ) `  {
x } )  =  {  .0.  }  <->  x  =  .0.  ) )
5857necon3bid 2838 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( ( LSpan `  W ) `  {
x } )  =/= 
{  .0.  }  <->  x  =/=  .0.  ) )
5955, 58mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W
) `  { x } )  =/=  {  .0.  } )
6059necomd 2849 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  =/=  ( ( LSpan `  W
) `  { x } ) )
61 df-pss 3590 . . . . . . . . . . . . 13  |-  ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  <-> 
( {  .0.  }  C_  ( ( LSpan `  W
) `  { x } )  /\  {  .0.  }  =/=  ( (
LSpan `  W ) `  { x } ) ) )
6252, 60, 61sylanbrc 698 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  {  .0.  }  C.  ( ( LSpan `  W
) `  { x } ) )
6315ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  U  e.  S )
6463ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  U  e.  S )
65 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  x  e.  U )
668, 48, 44, 64, 65lspsnel5a 18996 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( ( LSpan `  W
) `  { x } )  C_  U
)
6762, 66jca 554 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( {  .0.  }  C.  ( ( LSpan `  W
) `  { x } )  /\  (
( LSpan `  W ) `  { x } ) 
C_  U ) )
68 psseq2 3695 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( {  .0.  }  C.  s  <->  {  .0.  }  C.  ( ( LSpan `  W
) `  { x } ) ) )
69 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( s  C_  U  <->  ( ( LSpan `  W ) `  { x } ) 
C_  U ) )
7068, 69anbi12d 747 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( ( {  .0.  } 
C.  s  /\  s  C_  U )  <->  ( {  .0.  }  C.  ( ( LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U ) ) )
71 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( s  =  U  <-> 
( ( LSpan `  W
) `  { x } )  =  U ) )
7270, 71imbi12d 334 . . . . . . . . . . . . 13  |-  ( s  =  ( ( LSpan `  W ) `  {
x } )  -> 
( ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  <->  ( ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U )  ->  (
( LSpan `  W ) `  { x } )  =  U ) ) )
7372rspcv 3305 . . . . . . . . . . . 12  |-  ( ( ( LSpan `  W ) `  { x } )  e.  S  ->  ( A. s  e.  S  ( ( {  .0.  } 
C.  s  /\  s  C_  U )  ->  s  =  U )  ->  (
( {  .0.  }  C.  ( ( LSpan `  W
) `  { x } )  /\  (
( LSpan `  W ) `  { x } ) 
C_  U )  -> 
( ( LSpan `  W
) `  { x } )  =  U ) ) )
7450, 73syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  ->  ( ( {  .0.  }  C.  (
( LSpan `  W ) `  { x } )  /\  ( ( LSpan `  W ) `  {
x } )  C_  U )  ->  (
( LSpan `  W ) `  { x } )  =  U ) ) )
7567, 74mpid 44 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\ 
{  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  /\  {  .0.  }  C.  U )  ->  ( A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U )  ->  ( ( LSpan `  W ) `  { x } )  =  U ) )
7675expimpd 629 . . . . . . . . 9  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  (
( {  .0.  }  C.  U  /\  A. s  e.  S  ( ( {  .0.  }  C.  s  /\  s  C_  U )  ->  s  =  U ) )  ->  (
( LSpan `  W ) `  { x } )  =  U ) )
7742, 76sylbid 230 . . . . . . . 8  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  ( {  .0.  } C U  ->  ( ( LSpan `  W ) `  {
x } )  =  U ) )
7839, 77mpd 15 . . . . . . 7  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  (
( LSpan `  W ) `  { x } )  =  U )
7978eqcomd 2628 . . . . . 6  |-  ( ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  /\  x  e.  U )  ->  U  =  ( ( LSpan `  W ) `  {
x } ) )
8079ex 450 . . . . 5  |-  ( ( ( ph  /\  {  .0.  } C U )  /\  x  e.  ( ( Base `  W
)  \  {  .0.  } ) )  ->  (
x  e.  U  ->  U  =  ( ( LSpan `  W ) `  { x } ) ) )
8180reximdva 3017 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) x  e.  U  ->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { x } ) ) )
8238, 81mpd 15 . . 3  |-  ( (
ph  /\  {  .0.  } C U )  ->  E. x  e.  (
( Base `  W )  \  {  .0.  } ) U  =  ( (
LSpan `  W ) `  { x } ) )
834adantr 481 . . . 4  |-  ( (
ph  /\  {  .0.  } C U )  ->  W  e.  LVec )
8423, 48, 1, 2islsat 34278 . . . 4  |-  ( W  e.  LVec  ->  ( U  e.  A  <->  E. x  e.  ( ( Base `  W
)  \  {  .0.  } ) U  =  ( ( LSpan `  W ) `  { x } ) ) )
8583, 84syl 17 . . 3  |-  ( (
ph  /\  {  .0.  } C U )  -> 
( U  e.  A  <->  E. x  e.  ( (
Base `  W )  \  {  .0.  } ) U  =  ( (
LSpan `  W ) `  { x } ) ) )
8682, 85mpbird 247 . 2  |-  ( (
ph  /\  {  .0.  } C U )  ->  U  e.  A )
877, 86impbida 877 1  |-  ( ph  ->  ( U  e.  A  <->  {  .0.  } C U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    \ cdif 3571    C_ wss 3574    C. wpss 3575   {csn 4177   class class class wbr 4653   ` cfv 5888   Basecbs 15857   0gc0g 16100   LModclmod 18863   LSubSpclss 18932   LSpanclspn 18971   LVecclvec 19102  LSAtomsclsa 34261    <oLL clcv 34305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-drng 18749  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lvec 19103  df-lsatoms 34263  df-lcv 34306
This theorem is referenced by:  mapdcnvatN  36955  mapdat  36956
  Copyright terms: Public domain W3C validator