MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flim Structured version   Visualization version   GIF version

Theorem mbfi1flim 23490
Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1 (𝜑𝐹 ∈ MblFn)
mbfi1flim.2 (𝜑𝐹:𝐴⟶ℝ)
Assertion
Ref Expression
mbfi1flim (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Distinct variable groups:   𝑔,𝑛,𝑥,𝐴   𝑔,𝐹,𝑛,𝑥   𝜑,𝑔,𝑛,𝑥

Proof of Theorem mbfi1flim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iftrue 4092 . . . . . . . 8 (𝑦𝐴 → if(𝑦𝐴, (𝐹𝑦), 0) = (𝐹𝑦))
21mpteq2ia 4740 . . . . . . 7 (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦𝐴 ↦ (𝐹𝑦))
3 mbfi1flim.2 . . . . . . . . 9 (𝜑𝐹:𝐴⟶ℝ)
43feqmptd 6249 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐴 ↦ (𝐹𝑦)))
5 mbfi1flim.1 . . . . . . . 8 (𝜑𝐹 ∈ MblFn)
64, 5eqeltrrd 2702 . . . . . . 7 (𝜑 → (𝑦𝐴 ↦ (𝐹𝑦)) ∈ MblFn)
72, 6syl5eqel 2705 . . . . . 6 (𝜑 → (𝑦𝐴 ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
8 fvex 6201 . . . . . . . 8 (𝐹𝑦) ∈ V
9 c0ex 10034 . . . . . . . 8 0 ∈ V
108, 9ifex 4156 . . . . . . 7 if(𝑦𝐴, (𝐹𝑦), 0) ∈ V
1110a1i 11 . . . . . 6 ((𝜑𝑦𝐴) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ V)
127, 11mbfdm2 23405 . . . . 5 (𝜑𝐴 ∈ dom vol)
13 mblss 23299 . . . . 5 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
1412, 13syl 17 . . . 4 (𝜑𝐴 ⊆ ℝ)
15 rembl 23308 . . . . 5 ℝ ∈ dom vol
1615a1i 11 . . . 4 (𝜑 → ℝ ∈ dom vol)
17 eldifn 3733 . . . . . 6 (𝑦 ∈ (ℝ ∖ 𝐴) → ¬ 𝑦𝐴)
1817adantl 482 . . . . 5 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → ¬ 𝑦𝐴)
1918iffalsed 4097 . . . 4 ((𝜑𝑦 ∈ (ℝ ∖ 𝐴)) → if(𝑦𝐴, (𝐹𝑦), 0) = 0)
2014, 16, 11, 19, 7mbfss 23413 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) ∈ MblFn)
213ffvelrnda 6359 . . . . . 6 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ ℝ)
22 0red 10041 . . . . . 6 ((𝜑 ∧ ¬ 𝑦𝐴) → 0 ∈ ℝ)
2321, 22ifclda 4120 . . . . 5 (𝜑 → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
2423adantr 481 . . . 4 ((𝜑𝑦 ∈ ℝ) → if(𝑦𝐴, (𝐹𝑦), 0) ∈ ℝ)
25 eqid 2622 . . . 4 (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))
2624, 25fmptd 6385 . . 3 (𝜑 → (𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0)):ℝ⟶ℝ)
2720, 26mbfi1flimlem 23489 . 2 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
28 ssralv 3666 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
2914, 28syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)))
3014sselda 3603 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
31 eleq1 2689 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐴𝑥𝐴))
32 fveq2 6191 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
3331, 32ifbieq1d 4109 . . . . . . . . . 10 (𝑦 = 𝑥 → if(𝑦𝐴, (𝐹𝑦), 0) = if(𝑥𝐴, (𝐹𝑥), 0))
34 fvex 6201 . . . . . . . . . . 11 (𝐹𝑥) ∈ V
3534, 9ifex 4156 . . . . . . . . . 10 if(𝑥𝐴, (𝐹𝑥), 0) ∈ V
3633, 25, 35fvmpt 6282 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
3730, 36syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = if(𝑥𝐴, (𝐹𝑥), 0))
38 iftrue 4092 . . . . . . . . 9 (𝑥𝐴 → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
3938adantl 482 . . . . . . . 8 ((𝜑𝑥𝐴) → if(𝑥𝐴, (𝐹𝑥), 0) = (𝐹𝑥))
4037, 39eqtrd 2656 . . . . . . 7 ((𝜑𝑥𝐴) → ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) = (𝐹𝑥))
4140breq2d 4665 . . . . . 6 ((𝜑𝑥𝐴) → ((𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4241ralbidva 2985 . . . . 5 (𝜑 → (∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) ↔ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4329, 42sylibd 229 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥) → ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
4443anim2d 589 . . 3 (𝜑 → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4544eximdv 1846 . 2 (𝜑 → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(𝑦𝐴, (𝐹𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥))))
4627, 45mpd 15 1 (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑥𝐴 (𝑛 ∈ ℕ ↦ ((𝑔𝑛)‘𝑥)) ⇝ (𝐹𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  dom cdm 5114  wf 5884  cfv 5888  cr 9935  0cc0 9936  cn 11020  cli 14215  volcvol 23232  MblFncmbf 23383  1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-0p 23437
This theorem is referenced by:  mbfmullem  23492
  Copyright terms: Public domain W3C validator