MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flim Structured version   Visualization version   Unicode version

Theorem mbfi1flim 23490
Description: Any real measurable function has a sequence of simple functions that converges to it. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1  |-  ( ph  ->  F  e. MblFn )
mbfi1flim.2  |-  ( ph  ->  F : A --> RR )
Assertion
Ref Expression
mbfi1flim  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, n, x, A    g, F, n, x    ph, g, n, x

Proof of Theorem mbfi1flim
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 iftrue 4092 . . . . . . . 8  |-  ( y  e.  A  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  =  ( F `
 y ) )
21mpteq2ia 4740 . . . . . . 7  |-  ( y  e.  A  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )  =  ( y  e.  A  |->  ( F `
 y ) )
3 mbfi1flim.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR )
43feqmptd 6249 . . . . . . . 8  |-  ( ph  ->  F  =  ( y  e.  A  |->  ( F `
 y ) ) )
5 mbfi1flim.1 . . . . . . . 8  |-  ( ph  ->  F  e. MblFn )
64, 5eqeltrrd 2702 . . . . . . 7  |-  ( ph  ->  ( y  e.  A  |->  ( F `  y
) )  e. MblFn )
72, 6syl5eqel 2705 . . . . . 6  |-  ( ph  ->  ( y  e.  A  |->  if ( y  e.  A ,  ( F `
 y ) ,  0 ) )  e. MblFn
)
8 fvex 6201 . . . . . . . 8  |-  ( F `
 y )  e. 
_V
9 c0ex 10034 . . . . . . . 8  |-  0  e.  _V
108, 9ifex 4156 . . . . . . 7  |-  if ( y  e.  A , 
( F `  y
) ,  0 )  e.  _V
1110a1i 11 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  e.  _V )
127, 11mbfdm2 23405 . . . . 5  |-  ( ph  ->  A  e.  dom  vol )
13 mblss 23299 . . . . 5  |-  ( A  e.  dom  vol  ->  A 
C_  RR )
1412, 13syl 17 . . . 4  |-  ( ph  ->  A  C_  RR )
15 rembl 23308 . . . . 5  |-  RR  e.  dom  vol
1615a1i 11 . . . 4  |-  ( ph  ->  RR  e.  dom  vol )
17 eldifn 3733 . . . . . 6  |-  ( y  e.  ( RR  \  A )  ->  -.  y  e.  A )
1817adantl 482 . . . . 5  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  -.  y  e.  A )
1918iffalsed 4097 . . . 4  |-  ( (
ph  /\  y  e.  ( RR  \  A ) )  ->  if (
y  e.  A , 
( F `  y
) ,  0 )  =  0 )
2014, 16, 11, 19, 7mbfss 23413 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) )  e. MblFn )
213ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  RR )
22 0red 10041 . . . . . 6  |-  ( (
ph  /\  -.  y  e.  A )  ->  0  e.  RR )
2321, 22ifclda 4120 . . . . 5  |-  ( ph  ->  if ( y  e.  A ,  ( F `
 y ) ,  0 )  e.  RR )
2423adantr 481 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( y  e.  A , 
( F `  y
) ,  0 )  e.  RR )
25 eqid 2622 . . . 4  |-  ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )  =  ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) )
2624, 25fmptd 6385 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) : RR --> RR )
2720, 26mbfi1flimlem 23489 . 2  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
28 ssralv 3666 . . . . . 6  |-  ( A 
C_  RR  ->  ( A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) ) `  x )  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
2914, 28syl 17 . . . . 5  |-  ( ph  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) ) )
3014sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
31 eleq1 2689 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
32 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
3331, 32ifbieq1d 4109 . . . . . . . . . 10  |-  ( y  =  x  ->  if ( y  e.  A ,  ( F `  y ) ,  0 )  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
34 fvex 6201 . . . . . . . . . . 11  |-  ( F `
 x )  e. 
_V
3534, 9ifex 4156 . . . . . . . . . 10  |-  if ( x  e.  A , 
( F `  x
) ,  0 )  e.  _V
3633, 25, 35fvmpt 6282 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
3730, 36syl 17 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( x  e.  A , 
( F `  x
) ,  0 ) )
38 iftrue 4092 . . . . . . . . 9  |-  ( x  e.  A  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
3938adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  if ( x  e.  A ,  ( F `  x ) ,  0 )  =  ( F `
 x ) )
4037, 39eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  =  ( F `
 x ) )
4140breq2d 4665 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
4241ralbidva 2985 . . . . 5  |-  ( ph  ->  ( A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  <->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
4329, 42sylibd 229 . . . 4  |-  ( ph  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
)  ->  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
4443anim2d 589 . . 3  |-  ( ph  ->  ( ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A , 
( F `  y
) ,  0 ) ) `  x ) )  ->  ( g : NN --> dom  S.1  /\  A. x  e.  A  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
4544eximdv 1846 . 2  |-  ( ph  ->  ( E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( y  e.  A ,  ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  A  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
4627, 45mpd 15 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  A  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888   RRcr 9935   0cc0 9936   NNcn 11020    ~~> cli 14215   volcvol 23232  MblFncmbf 23383   S.1citg1 23384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-0p 23437
This theorem is referenced by:  mbfmullem  23492
  Copyright terms: Public domain W3C validator