| Step | Hyp | Ref
| Expression |
| 1 | | mbfi1flimlem.2 |
. . . . 5
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 2 | 1 | ffvelrnda 6359 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 3 | 1 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 4 | | mbfi1flim.1 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 5 | 3, 4 | eqeltrrd 2702 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ∈ MblFn) |
| 6 | 2, 5 | mbfpos 23418 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) ∈ MblFn) |
| 7 | | 0re 10040 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 8 | | ifcl 4130 |
. . . . . 6
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ) |
| 9 | 2, 7, 8 | sylancl 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ) |
| 10 | | max1 12016 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ (𝐹‘𝑦) ∈ ℝ) → 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0)) |
| 11 | 7, 2, 10 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0)) |
| 12 | | elrege0 12278 |
. . . . 5
⊢ (if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
(𝐹‘𝑦), (𝐹‘𝑦), 0))) |
| 13 | 9, 11, 12 | sylanbrc 698 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) ∈ (0[,)+∞)) |
| 14 | | eqid 2622 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦ if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0)) |
| 15 | 13, 14 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦),
0)):ℝ⟶(0[,)+∞)) |
| 16 | 6, 15 | mbfi1fseq 23488 |
. 2
⊢ (𝜑 → ∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥))) |
| 17 | 2 | renegcld 10457 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → -(𝐹‘𝑦) ∈ ℝ) |
| 18 | 2, 5 | mbfneg 23417 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ -(𝐹‘𝑦)) ∈ MblFn) |
| 19 | 17, 18 | mbfpos 23418 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) ∈ MblFn) |
| 20 | | ifcl 4130 |
. . . . . 6
⊢ ((-(𝐹‘𝑦) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ) |
| 21 | 17, 7, 20 | sylancl 694 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ) |
| 22 | | max1 12016 |
. . . . . 6
⊢ ((0
∈ ℝ ∧ -(𝐹‘𝑦) ∈ ℝ) → 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
| 23 | 7, 17, 22 | sylancr 695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
| 24 | | elrege0 12278 |
. . . . 5
⊢ (if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ (0[,)+∞) ↔ (if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ ℝ ∧ 0 ≤ if(0 ≤
-(𝐹‘𝑦), -(𝐹‘𝑦), 0))) |
| 25 | 21, 23, 24 | sylanbrc 698 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) ∈ (0[,)+∞)) |
| 26 | | eqid 2622 |
. . . 4
⊢ (𝑦 ∈ ℝ ↦ if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) = (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0)) |
| 27 | 25, 26 | fmptd 6385 |
. . 3
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦),
0)):ℝ⟶(0[,)+∞)) |
| 28 | 19, 27 | mbfi1fseq 23488 |
. 2
⊢ (𝜑 → ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
| 29 | | eeanv 2182 |
. . 3
⊢
(∃𝑓∃ℎ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) ↔ (∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
| 30 | | 3simpb 1059 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) → (𝑓:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥))) |
| 31 | | 3simpb 1059 |
. . . . . . 7
⊢ ((ℎ:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
| 32 | 30, 31 | anim12i 590 |
. . . . . 6
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
| 33 | | an4 865 |
. . . . . 6
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) ↔ ((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
| 34 | 32, 33 | sylib 208 |
. . . . 5
⊢ (((𝑓:ℕ⟶dom
∫1 ∧ ∀𝑛 ∈ ℕ (0𝑝
∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)))) |
| 35 | | r19.26 3064 |
. . . . . . 7
⊢
(∀𝑥 ∈
ℝ ((𝑛 ∈ ℕ
↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) |
| 36 | | i1fsub 23475 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ dom ∫1
∧ 𝑦 ∈ dom
∫1) → (𝑥 ∘𝑓 − 𝑦) ∈ dom
∫1) |
| 37 | 36 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ (𝑥 ∈ dom ∫1 ∧ 𝑦 ∈ dom ∫1))
→ (𝑥
∘𝑓 − 𝑦) ∈ dom
∫1) |
| 38 | | simprl 794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝑓:ℕ⟶dom
∫1) |
| 39 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℎ:ℕ⟶dom
∫1) |
| 40 | | nnex 11026 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
| 41 | 40 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℕ ∈ V) |
| 42 | | inidm 3822 |
. . . . . . . . 9
⊢ (ℕ
∩ ℕ) = ℕ |
| 43 | 37, 38, 39, 41, 41, 42 | off 6912 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (𝑓 ∘𝑓
∘𝑓 − ℎ):ℕ⟶dom
∫1) |
| 44 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) |
| 45 | 44 | breq2d 4665 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (0 ≤ (𝐹‘𝑦) ↔ 0 ≤ (𝐹‘𝑥))) |
| 46 | 45, 44 | ifbieq1d 4109 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0) = if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
| 47 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘𝑥) ∈ V |
| 48 | | c0ex 10034 |
. . . . . . . . . . . . . . 15
⊢ 0 ∈
V |
| 49 | 47, 48 | ifex 4156 |
. . . . . . . . . . . . . 14
⊢ if(0 ≤
(𝐹‘𝑥), (𝐹‘𝑥), 0) ∈ V |
| 50 | 46, 14, 49 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0
≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) = if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
| 51 | 50 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0))) |
| 52 | 44 | negeqd 10275 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑥 → -(𝐹‘𝑦) = -(𝐹‘𝑥)) |
| 53 | 52 | breq2d 4665 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑥 → (0 ≤ -(𝐹‘𝑦) ↔ 0 ≤ -(𝐹‘𝑥))) |
| 54 | 53, 52 | ifbieq1d 4109 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑥 → if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0) = if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
| 55 | | negex 10279 |
. . . . . . . . . . . . . . 15
⊢ -(𝐹‘𝑥) ∈ V |
| 56 | 55, 48 | ifex 4156 |
. . . . . . . . . . . . . 14
⊢ if(0 ≤
-(𝐹‘𝑥), -(𝐹‘𝑥), 0) ∈ V |
| 57 | 54, 26, 56 | fvmpt 6282 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → ((𝑦 ∈ ℝ ↦ if(0
≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥) = if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
| 58 | 57 | breq2d 4665 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) |
| 59 | 51, 58 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ → (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)))) |
| 60 | 59 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) ↔ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)))) |
| 61 | | nnuz 11723 |
. . . . . . . . . . . . 13
⊢ ℕ =
(ℤ≥‘1) |
| 62 | | 1zzd 11408 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → 1 ∈
ℤ) |
| 63 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0)) |
| 64 | 40 | mptex 6486 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ∈ V |
| 65 | 64 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ∈ V) |
| 66 | | simprr 796 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) |
| 67 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (𝑓‘𝑛) ∈ dom
∫1) |
| 68 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓‘𝑛) ∈ dom ∫1 → (𝑓‘𝑛):ℝ⟶ℝ) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (𝑓‘𝑛):ℝ⟶ℝ) |
| 70 | 69 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑛)‘𝑥) ∈ ℝ) |
| 71 | 70 | an32s 846 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((𝑓‘𝑛)‘𝑥) ∈ ℝ) |
| 72 | 71 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((𝑓‘𝑛)‘𝑥) ∈ ℂ) |
| 73 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) |
| 74 | 72, 73 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 75 | 74 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 76 | 75 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
| 77 | 39 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (ℎ‘𝑛) ∈ dom
∫1) |
| 78 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℎ‘𝑛) ∈ dom ∫1 → (ℎ‘𝑛):ℝ⟶ℝ) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) → (ℎ‘𝑛):ℝ⟶ℝ) |
| 80 | 79 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑛
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((ℎ‘𝑛)‘𝑥) ∈ ℝ) |
| 81 | 80 | an32s 846 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((ℎ‘𝑛)‘𝑥) ∈ ℝ) |
| 82 | 81 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑛
∈ ℕ) → ((ℎ‘𝑛)‘𝑥) ∈ ℂ) |
| 83 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) |
| 84 | 82, 83 | fmptd 6385 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝑛
∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 85 | 84 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)):ℕ⟶ℂ) |
| 86 | 85 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘) ∈ ℂ) |
| 87 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓:ℕ⟶dom
∫1 → 𝑓
Fn ℕ) |
| 88 | 38, 87 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝑓 Fn ℕ) |
| 89 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℎ:ℕ⟶dom
∫1 → ℎ
Fn ℕ) |
| 90 | 39, 89 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ℎ
Fn ℕ) |
| 91 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) = (𝑓‘𝑘)) |
| 92 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) = (ℎ‘𝑘)) |
| 93 | 88, 90, 41, 41, 42, 91, 92 | ofval 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → ((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑘) = ((𝑓‘𝑘) ∘𝑓 − (ℎ‘𝑘))) |
| 94 | 93 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘) ∘𝑓 − (ℎ‘𝑘))‘𝑥)) |
| 95 | 94 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘) ∘𝑓 − (ℎ‘𝑘))‘𝑥)) |
| 96 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) ∈ dom
∫1) |
| 97 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑘) ∈ dom ∫1 → (𝑓‘𝑘):ℝ⟶ℝ) |
| 98 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓‘𝑘):ℝ⟶ℝ → (𝑓‘𝑘) Fn ℝ) |
| 99 | 96, 97, 98 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (𝑓‘𝑘) Fn ℝ) |
| 100 | 39 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) ∈ dom
∫1) |
| 101 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑘) ∈ dom ∫1 → (ℎ‘𝑘):ℝ⟶ℝ) |
| 102 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℎ‘𝑘):ℝ⟶ℝ → (ℎ‘𝑘) Fn ℝ) |
| 103 | 100, 101,
102 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → (ℎ‘𝑘) Fn ℝ) |
| 104 | | reex 10027 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
∈ V |
| 105 | 104 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) → ℝ ∈ V) |
| 106 | | inidm 3822 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℝ
∩ ℝ) = ℝ |
| 107 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((𝑓‘𝑘)‘𝑥) = ((𝑓‘𝑘)‘𝑥)) |
| 108 | | eqidd 2623 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → ((ℎ‘𝑘)‘𝑥) = ((ℎ‘𝑘)‘𝑥)) |
| 109 | 99, 103, 105, 105, 106, 107, 108 | ofval 6906 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓‘𝑘) ∘𝑓 − (ℎ‘𝑘))‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
| 110 | 95, 109 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑘
∈ ℕ) ∧ 𝑥
∈ ℝ) → (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
| 111 | 110 | an32s 846 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑘)‘𝑥) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
| 112 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛) = ((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑘)) |
| 113 | 112 | fveq1d 6193 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥) = (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑘)‘𝑥)) |
| 114 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) |
| 115 | | fvex 6201 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑘)‘𝑥) ∈ V |
| 116 | 113, 114,
115 | fvmpt 6282 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑘)‘𝑥)) |
| 117 | 116 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑘)‘𝑥)) |
| 118 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (𝑓‘𝑛) = (𝑓‘𝑘)) |
| 119 | 118 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((𝑓‘𝑛)‘𝑥) = ((𝑓‘𝑘)‘𝑥)) |
| 120 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑘)‘𝑥) ∈ V |
| 121 | 119, 73, 120 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) = ((𝑓‘𝑘)‘𝑥)) |
| 122 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (ℎ‘𝑛) = (ℎ‘𝑘)) |
| 123 | 122 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((ℎ‘𝑛)‘𝑥) = ((ℎ‘𝑘)‘𝑥)) |
| 124 | | fvex 6201 |
. . . . . . . . . . . . . . . . . 18
⊢ ((ℎ‘𝑘)‘𝑥) ∈ V |
| 125 | 123, 83, 124 | fvmpt 6282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘) = ((ℎ‘𝑘)‘𝑥)) |
| 126 | 121, 125 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘)) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
| 127 | 126 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘)) = (((𝑓‘𝑘)‘𝑥) − ((ℎ‘𝑘)‘𝑥))) |
| 128 | 111, 117,
127 | 3eqtr4d 2666 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ 𝑘
∈ ℕ) → ((𝑛
∈ ℕ ↦ (((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘))) |
| 129 | 128 | adantlr 751 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑓:ℕ⟶dom
∫1 ∧ ℎ:ℕ⟶dom ∫1)) ∧
𝑥 ∈ ℝ) ∧
((𝑛 ∈ ℕ ↦
((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥))‘𝑘) = (((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥))‘𝑘) − ((𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥))‘𝑘))) |
| 130 | 61, 62, 63, 65, 66, 76, 86, 129 | climsub 14364 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) |
| 131 | 1 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → 𝐹:ℝ⟶ℝ) |
| 132 | 131 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 133 | | max0sub 12027 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) ∈ ℝ → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
| 134 | 132, 133 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
| 135 | 134 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) − if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) = (𝐹‘𝑥)) |
| 136 | 130, 135 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) ∧ ((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0))) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| 137 | 136 | ex 450 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ if(0 ≤ (𝐹‘𝑥), (𝐹‘𝑥), 0) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ if(0 ≤ -(𝐹‘𝑥), -(𝐹‘𝑥), 0)) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 138 | 60, 137 | sylbid 230 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) ∧ 𝑥
∈ ℝ) → (((𝑛
∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 139 | 138 | ralimdva 2962 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 140 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝑓 ∘𝑓
∘𝑓 − ℎ) ∈ V |
| 141 | | feq1 6026 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → (𝑔:ℕ⟶dom ∫1 ↔
(𝑓
∘𝑓 ∘𝑓 − ℎ):ℕ⟶dom
∫1)) |
| 142 | | fveq1 6190 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → (𝑔‘𝑛) = ((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)) |
| 143 | 142 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → ((𝑔‘𝑛)‘𝑥) = (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) |
| 144 | 143 | mpteq2dv 4745 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥))) |
| 145 | 144 | breq1d 4663 |
. . . . . . . . . . 11
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → ((𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 146 | 145 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ (((𝑓 ∘𝑓
∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 147 | 141, 146 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑔 = (𝑓 ∘𝑓
∘𝑓 − ℎ) → ((𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) ↔ ((𝑓 ∘𝑓
∘𝑓 − ℎ):ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
(((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 148 | 140, 147 | spcev 3300 |
. . . . . . . 8
⊢ (((𝑓 ∘𝑓
∘𝑓 − ℎ):ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
(((𝑓
∘𝑓 ∘𝑓 − ℎ)‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |
| 149 | 43, 139, 148 | syl6an 568 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → (∀𝑥 ∈ ℝ ((𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 150 | 35, 149 | syl5bir 233 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1)) → ((∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 151 | 150 | expimpd 629 |
. . . . 5
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
ℎ:ℕ⟶dom
∫1) ∧ (∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 152 | 34, 151 | syl5 34 |
. . . 4
⊢ (𝜑 → (((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 153 | 152 | exlimdvv 1862 |
. . 3
⊢ (𝜑 → (∃𝑓∃ℎ((𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ (ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 154 | 29, 153 | syl5bir 233 |
. 2
⊢ (𝜑 → ((∃𝑓(𝑓:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (𝑓‘𝑛) ∧ (𝑓‘𝑛) ∘𝑟 ≤ (𝑓‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑓‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ (𝐹‘𝑦), (𝐹‘𝑦), 0))‘𝑥)) ∧ ∃ℎ(ℎ:ℕ⟶dom ∫1 ∧
∀𝑛 ∈ ℕ
(0𝑝 ∘𝑟 ≤ (ℎ‘𝑛) ∧ (ℎ‘𝑛) ∘𝑟 ≤ (ℎ‘(𝑛 + 1))) ∧ ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((ℎ‘𝑛)‘𝑥)) ⇝ ((𝑦 ∈ ℝ ↦ if(0 ≤ -(𝐹‘𝑦), -(𝐹‘𝑦), 0))‘𝑥))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)))) |
| 155 | 16, 28, 154 | mp2and 715 |
1
⊢ (𝜑 → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧
∀𝑥 ∈ ℝ
(𝑛 ∈ ℕ ↦
((𝑔‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥))) |