| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑘𝜑 |
| 2 | | meadjiunlem.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑋⟶𝑆) |
| 3 | | meadjiunlem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 4 | 2, 3 | jca 554 |
. . . . 5
⊢ (𝜑 → (𝐺:𝑋⟶𝑆 ∧ 𝑋 ∈ 𝑉)) |
| 5 | | fex 6490 |
. . . . 5
⊢ ((𝐺:𝑋⟶𝑆 ∧ 𝑋 ∈ 𝑉) → 𝐺 ∈ V) |
| 6 | | rnexg 7098 |
. . . . 5
⊢ (𝐺 ∈ V → ran 𝐺 ∈ V) |
| 7 | 4, 5, 6 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran 𝐺 ∈ V) |
| 8 | | difssd 3738 |
. . . 4
⊢ (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran 𝐺) |
| 9 | | meadjiunlem.f |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ Meas) |
| 10 | | meadjiunlem.3 |
. . . . . . 7
⊢ 𝑆 = dom 𝑀 |
| 11 | 9, 10 | meaf 40670 |
. . . . . 6
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑀:𝑆⟶(0[,]+∞)) |
| 13 | | frn 6053 |
. . . . . . . 8
⊢ (𝐺:𝑋⟶𝑆 → ran 𝐺 ⊆ 𝑆) |
| 14 | 2, 13 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝐺 ⊆ 𝑆) |
| 15 | 14 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → ran 𝐺 ⊆ 𝑆) |
| 16 | 8 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ ran 𝐺) |
| 17 | 15, 16 | sseldd 3604 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ 𝑆) |
| 18 | 12, 17 | ffvelrnd 6360 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ {∅})) → (𝑀‘𝑘) ∈ (0[,]+∞)) |
| 19 | | simpl 473 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝜑) |
| 20 | | id 22 |
. . . . . . . 8
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) |
| 21 | | dfin4 3867 |
. . . . . . . . 9
⊢ (ran
𝐺 ∩ {∅}) = (ran
𝐺 ∖ (ran 𝐺 ∖
{∅})) |
| 22 | 21 | eqcomi 2631 |
. . . . . . . 8
⊢ (ran
𝐺 ∖ (ran 𝐺 ∖ {∅})) = (ran
𝐺 ∩
{∅}) |
| 23 | 20, 22 | syl6eleq 2711 |
. . . . . . 7
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∩ {∅})) |
| 24 | | elinel2 3800 |
. . . . . . . 8
⊢ (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 ∈ {∅}) |
| 25 | | elsni 4194 |
. . . . . . . 8
⊢ (𝑘 ∈ {∅} → 𝑘 = ∅) |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 = ∅) |
| 27 | 23, 26 | syl 17 |
. . . . . 6
⊢ (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 = ∅) |
| 28 | 27 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝑘 = ∅) |
| 29 | | simpr 477 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝑘 = ∅) |
| 30 | 29 | fveq2d 6195 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘𝑘) = (𝑀‘∅)) |
| 31 | 9 | mea0 40671 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 32 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘∅) = 0) |
| 33 | 30, 32 | eqtrd 2656 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 = ∅) → (𝑀‘𝑘) = 0) |
| 34 | 19, 28, 33 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → (𝑀‘𝑘) = 0) |
| 35 | 1, 7, 8, 18, 34 | sge0ss 40629 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘)))) |
| 36 | 35 | eqcomd 2628 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 37 | 11, 14 | feqresmpt 6250 |
. . 3
⊢ (𝜑 → (𝑀 ↾ ran 𝐺) = (𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘))) |
| 38 | 37 | fveq2d 6195 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran 𝐺)) =
(Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀‘𝑘)))) |
| 39 | 2 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐺‘𝑗) ∈ 𝑆) |
| 40 | 2 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝐺 = (𝑗 ∈ 𝑋 ↦ (𝐺‘𝑗))) |
| 41 | 11 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝑀 = (𝑘 ∈ 𝑆 ↦ (𝑀‘𝑘))) |
| 42 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = (𝐺‘𝑗) → (𝑀‘𝑘) = (𝑀‘(𝐺‘𝑗))) |
| 43 | 39, 40, 41, 42 | fmptco 6396 |
. . . 4
⊢ (𝜑 → (𝑀 ∘ 𝐺) = (𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗)))) |
| 44 | 43 | fveq2d 6195 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑀 ∘ 𝐺)) =
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 45 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 46 | | meadjiunlem.y |
. . . . . 6
⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} |
| 47 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ⊆ 𝑋 |
| 48 | 47 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ⊆ 𝑋) |
| 49 | 46, 48 | syl5eqss 3649 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 50 | 11 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑀:𝑆⟶(0[,]+∞)) |
| 51 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝐺:𝑋⟶𝑆) |
| 52 | 49 | sselda 3603 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → 𝑗 ∈ 𝑋) |
| 53 | 51, 52 | ffvelrnd 6360 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) ∈ 𝑆) |
| 54 | 50, 53 | ffvelrnd 6360 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝑀‘(𝐺‘𝑗)) ∈ (0[,]+∞)) |
| 55 | | eldifi 3732 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (𝑋 ∖ 𝑌) → 𝑗 ∈ 𝑋) |
| 56 | 55 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ 𝑋) |
| 57 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑗) = ∅ → (𝑀‘(𝐺‘𝑗)) = (𝑀‘∅)) |
| 58 | 57 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = (𝑀‘∅)) |
| 59 | 9 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → 𝑀 ∈ Meas) |
| 60 | 59 | mea0 40671 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘∅) = 0) |
| 61 | 58, 60 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 62 | 61 | ad4ant14 1293 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) ∧ (𝐺‘𝑗) = ∅) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 63 | | neneq 2800 |
. . . . . . . . . . . . 13
⊢ ((𝑀‘(𝐺‘𝑗)) ≠ 0 → ¬ (𝑀‘(𝐺‘𝑗)) = 0) |
| 64 | 63 | ad2antlr 763 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) ∧ (𝐺‘𝑗) = ∅) → ¬ (𝑀‘(𝐺‘𝑗)) = 0) |
| 65 | 62, 64 | pm2.65da 600 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → ¬ (𝐺‘𝑗) = ∅) |
| 66 | 65 | neqned 2801 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → (𝐺‘𝑗) ≠ ∅) |
| 67 | 56, 66 | jca 554 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → (𝑗 ∈ 𝑋 ∧ (𝐺‘𝑗) ≠ ∅)) |
| 68 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐺‘𝑖) = (𝐺‘𝑗)) |
| 69 | 68 | neeq1d 2853 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐺‘𝑖) ≠ ∅ ↔ (𝐺‘𝑗) ≠ ∅)) |
| 70 | 69 | elrab 3363 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ↔ (𝑗 ∈ 𝑋 ∧ (𝐺‘𝑗) ≠ ∅)) |
| 71 | 67, 70 | sylibr 224 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅}) |
| 72 | 71, 46 | syl6eleqr 2712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → 𝑗 ∈ 𝑌) |
| 73 | | eldifn 3733 |
. . . . . . . 8
⊢ (𝑗 ∈ (𝑋 ∖ 𝑌) → ¬ 𝑗 ∈ 𝑌) |
| 74 | 73 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) ∧ (𝑀‘(𝐺‘𝑗)) ≠ 0) → ¬ 𝑗 ∈ 𝑌) |
| 75 | 72, 74 | pm2.65da 600 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) → ¬ (𝑀‘(𝐺‘𝑗)) ≠ 0) |
| 76 | | nne 2798 |
. . . . . 6
⊢ (¬
(𝑀‘(𝐺‘𝑗)) ≠ 0 ↔ (𝑀‘(𝐺‘𝑗)) = 0) |
| 77 | 75, 76 | sylib 208 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑋 ∖ 𝑌)) → (𝑀‘(𝐺‘𝑗)) = 0) |
| 78 | 45, 3, 49, 54, 77 | sge0ss 40629 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 79 | 78 | eqcomd 2628 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑋 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 80 | 3, 49 | ssexd 4805 |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ V) |
| 81 | | nfv 1843 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
| 82 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) |
| 83 | 2 | ffnd 6046 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 Fn 𝑋) |
| 84 | | dffn3 6054 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn 𝑋 ↔ 𝐺:𝑋⟶ran 𝐺) |
| 85 | 83, 84 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺:𝑋⟶ran 𝐺) |
| 86 | 85 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → 𝐺:𝑋⟶ran 𝐺) |
| 87 | 49 | sselda 3603 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → 𝑖 ∈ 𝑋) |
| 88 | 86, 87 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ∈ ran 𝐺) |
| 89 | 46 | eleq2i 2693 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ 𝑌 ↔ 𝑖 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅}) |
| 90 | | rabid 3116 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} ↔ (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 91 | 89, 90 | bitri 264 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ 𝑌 ↔ (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 92 | 91 | biimpi 206 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝑌 → (𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅)) |
| 93 | 92 | simprd 479 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝑌 → (𝐺‘𝑖) ≠ ∅) |
| 94 | 93 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ≠ ∅) |
| 95 | | nelsn 4212 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑖) ≠ ∅ → ¬ (𝐺‘𝑖) ∈ {∅}) |
| 96 | 94, 95 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → ¬ (𝐺‘𝑖) ∈ {∅}) |
| 97 | 88, 96 | eldifd 3585 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑌) → (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅})) |
| 98 | | meadjiunlem.dj |
. . . . . . . . . 10
⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) |
| 99 | | disjss1 4626 |
. . . . . . . . . 10
⊢ (𝑌 ⊆ 𝑋 → (Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖) → Disj 𝑖 ∈ 𝑌 (𝐺‘𝑖))) |
| 100 | 49, 98, 99 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → Disj 𝑖 ∈ 𝑌 (𝐺‘𝑖)) |
| 101 | 81, 82, 97, 94, 100 | disjf1 39369 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅})) |
| 102 | 2, 49 | feqresmpt 6250 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ↾ 𝑌) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 103 | | f1eq1 6096 |
. . . . . . . . 9
⊢ ((𝐺 ↾ 𝑌) = (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅}))) |
| 104 | 102, 103 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)):𝑌–1-1→(ran 𝐺 ∖ {∅}))) |
| 105 | 101, 104 | mpbird 247 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅})) |
| 106 | 102 | rneqd 5353 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) = ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 107 | 97 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑖 ∈ 𝑌 (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅})) |
| 108 | 82 | rnmptss 6392 |
. . . . . . . . . 10
⊢
(∀𝑖 ∈
𝑌 (𝐺‘𝑖) ∈ (ran 𝐺 ∖ {∅}) → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) ⊆ (ran 𝐺 ∖ {∅})) |
| 109 | 107, 108 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) ⊆ (ran 𝐺 ∖ {∅})) |
| 110 | 106, 109 | eqsstrd 3639 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) ⊆ (ran 𝐺 ∖ {∅})) |
| 111 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝜑) |
| 112 | | eldifi 3732 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ∈ ran 𝐺) |
| 113 | 112 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran 𝐺) |
| 114 | | eldifsni 4320 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ≠ ∅) |
| 115 | 114 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ≠ ∅) |
| 116 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺) |
| 117 | | fvelrnb 6243 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 Fn 𝑋 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 118 | 83, 117 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 119 | 118 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥)) |
| 120 | 116, 119 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺) → ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥) |
| 121 | 120 | 3adant3 1081 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → ∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥) |
| 122 | | id 22 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑖) = 𝑥 → (𝐺‘𝑖) = 𝑥) |
| 123 | 122 | eqcomd 2628 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑖) = 𝑥 → 𝑥 = (𝐺‘𝑖)) |
| 124 | 123 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 = (𝐺‘𝑖)) |
| 125 | | simp1l 1085 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝜑) |
| 126 | | simp2 1062 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑖 ∈ 𝑋) |
| 127 | | simpr 477 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) = 𝑥) |
| 128 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 ≠ ∅) |
| 129 | 127, 128 | eqnetrd 2861 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ≠ ∅ ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 130 | 129 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 131 | 130 | 3adant2 1080 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ≠ ∅) |
| 132 | 91 | biimpri 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → 𝑖 ∈ 𝑌) |
| 133 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ V) |
| 134 | 82 | elrnmpt1 5374 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑌 ∧ (𝐺‘𝑖) ∈ V) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 135 | 132, 133,
134 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 136 | 135 | 3adant1 1079 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖))) |
| 137 | 106 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = ran (𝐺 ↾ 𝑌)) |
| 138 | 137 | 3ad2ant1 1082 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → ran (𝑖 ∈ 𝑌 ↦ (𝐺‘𝑖)) = ran (𝐺 ↾ 𝑌)) |
| 139 | 136, 138 | eleqtrd 2703 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) ≠ ∅) → (𝐺‘𝑖) ∈ ran (𝐺 ↾ 𝑌)) |
| 140 | 125, 126,
131, 139 | syl3anc 1326 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → (𝐺‘𝑖) ∈ ran (𝐺 ↾ 𝑌)) |
| 141 | 124, 140 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ≠ ∅) ∧ 𝑖 ∈ 𝑋 ∧ (𝐺‘𝑖) = 𝑥) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 142 | 141 | 3exp 1264 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ≠ ∅) → (𝑖 ∈ 𝑋 → ((𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌)))) |
| 143 | 142 | rexlimdv 3030 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ≠ ∅) → (∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌))) |
| 144 | 143 | 3adant2 1080 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → (∃𝑖 ∈ 𝑋 (𝐺‘𝑖) = 𝑥 → 𝑥 ∈ ran (𝐺 ↾ 𝑌))) |
| 145 | 121, 144 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ran 𝐺 ∧ 𝑥 ≠ ∅) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 146 | 111, 113,
115, 145 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 147 | 146 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (ran 𝐺 ∖ {∅})𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 148 | | dfss3 3592 |
. . . . . . . . 9
⊢ ((ran
𝐺 ∖ {∅})
⊆ ran (𝐺 ↾
𝑌) ↔ ∀𝑥 ∈ (ran 𝐺 ∖ {∅})𝑥 ∈ ran (𝐺 ↾ 𝑌)) |
| 149 | 147, 148 | sylibr 224 |
. . . . . . . 8
⊢ (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran (𝐺 ↾ 𝑌)) |
| 150 | 110, 149 | eqssd 3620 |
. . . . . . 7
⊢ (𝜑 → ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅})) |
| 151 | 105, 150 | jca 554 |
. . . . . 6
⊢ (𝜑 → ((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅}))) |
| 152 | | dff1o5 6146 |
. . . . . 6
⊢ ((𝐺 ↾ 𝑌):𝑌–1-1-onto→(ran
𝐺 ∖ {∅}) ↔
((𝐺 ↾ 𝑌):𝑌–1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺 ↾ 𝑌) = (ran 𝐺 ∖ {∅}))) |
| 153 | 151, 152 | sylibr 224 |
. . . . 5
⊢ (𝜑 → (𝐺 ↾ 𝑌):𝑌–1-1-onto→(ran
𝐺 ∖
{∅})) |
| 154 | | fvres 6207 |
. . . . . 6
⊢ (𝑗 ∈ 𝑌 → ((𝐺 ↾ 𝑌)‘𝑗) = (𝐺‘𝑗)) |
| 155 | 154 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → ((𝐺 ↾ 𝑌)‘𝑗) = (𝐺‘𝑗)) |
| 156 | 1, 45, 42, 80, 153, 155, 18 | sge0f1o 40599 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘))) =
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗))))) |
| 157 | 156 | eqcomd 2628 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ 𝑌 ↦ (𝑀‘(𝐺‘𝑗)))) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 158 | 44, 79, 157 | 3eqtrd 2660 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑀 ∘ 𝐺)) =
(Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀‘𝑘)))) |
| 159 | 36, 38, 158 | 3eqtr4d 2666 |
1
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ ran 𝐺)) =
(Σ^‘(𝑀 ∘ 𝐺))) |