Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjiunlem Structured version   Visualization version   GIF version

Theorem meadjiunlem 40682
Description: The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjiunlem.f (𝜑𝑀 ∈ Meas)
meadjiunlem.3 𝑆 = dom 𝑀
meadjiunlem.x (𝜑𝑋𝑉)
meadjiunlem.g (𝜑𝐺:𝑋𝑆)
meadjiunlem.y 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
meadjiunlem.dj (𝜑Disj 𝑖𝑋 (𝐺𝑖))
Assertion
Ref Expression
meadjiunlem (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑋   𝑖,𝑌   𝜑,𝑖
Allowed substitution hints:   𝑆(𝑖)   𝑀(𝑖)   𝑉(𝑖)

Proof of Theorem meadjiunlem
Dummy variables 𝑥 𝑘 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4 𝑘𝜑
2 meadjiunlem.g . . . . . 6 (𝜑𝐺:𝑋𝑆)
3 meadjiunlem.x . . . . . 6 (𝜑𝑋𝑉)
42, 3jca 554 . . . . 5 (𝜑 → (𝐺:𝑋𝑆𝑋𝑉))
5 fex 6490 . . . . 5 ((𝐺:𝑋𝑆𝑋𝑉) → 𝐺 ∈ V)
6 rnexg 7098 . . . . 5 (𝐺 ∈ V → ran 𝐺 ∈ V)
74, 5, 63syl 18 . . . 4 (𝜑 → ran 𝐺 ∈ V)
8 difssd 3738 . . . 4 (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran 𝐺)
9 meadjiunlem.f . . . . . . 7 (𝜑𝑀 ∈ Meas)
10 meadjiunlem.3 . . . . . . 7 𝑆 = dom 𝑀
119, 10meaf 40670 . . . . . 6 (𝜑𝑀:𝑆⟶(0[,]+∞))
1211adantr 481 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑀:𝑆⟶(0[,]+∞))
13 frn 6053 . . . . . . . 8 (𝐺:𝑋𝑆 → ran 𝐺𝑆)
142, 13syl 17 . . . . . . 7 (𝜑 → ran 𝐺𝑆)
1514adantr 481 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → ran 𝐺𝑆)
168sselda 3603 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ ran 𝐺)
1715, 16sseldd 3604 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → 𝑘𝑆)
1812, 17ffvelrnd 6360 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ {∅})) → (𝑀𝑘) ∈ (0[,]+∞))
19 simpl 473 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝜑)
20 id 22 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})))
21 dfin4 3867 . . . . . . . . 9 (ran 𝐺 ∩ {∅}) = (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))
2221eqcomi 2631 . . . . . . . 8 (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) = (ran 𝐺 ∩ {∅})
2320, 22syl6eleq 2711 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 ∈ (ran 𝐺 ∩ {∅}))
24 elinel2 3800 . . . . . . . 8 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 ∈ {∅})
25 elsni 4194 . . . . . . . 8 (𝑘 ∈ {∅} → 𝑘 = ∅)
2624, 25syl 17 . . . . . . 7 (𝑘 ∈ (ran 𝐺 ∩ {∅}) → 𝑘 = ∅)
2723, 26syl 17 . . . . . 6 (𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅})) → 𝑘 = ∅)
2827adantl 482 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → 𝑘 = ∅)
29 simpr 477 . . . . . . 7 ((𝜑𝑘 = ∅) → 𝑘 = ∅)
3029fveq2d 6195 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀𝑘) = (𝑀‘∅))
319mea0 40671 . . . . . . 7 (𝜑 → (𝑀‘∅) = 0)
3231adantr 481 . . . . . 6 ((𝜑𝑘 = ∅) → (𝑀‘∅) = 0)
3330, 32eqtrd 2656 . . . . 5 ((𝜑𝑘 = ∅) → (𝑀𝑘) = 0)
3419, 28, 33syl2anc 693 . . . 4 ((𝜑𝑘 ∈ (ran 𝐺 ∖ (ran 𝐺 ∖ {∅}))) → (𝑀𝑘) = 0)
351, 7, 8, 18, 34sge0ss 40629 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
3635eqcomd 2628 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
3711, 14feqresmpt 6250 . . 3 (𝜑 → (𝑀 ↾ ran 𝐺) = (𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘)))
3837fveq2d 6195 . 2 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑘 ∈ ran 𝐺 ↦ (𝑀𝑘))))
392ffvelrnda 6359 . . . . 5 ((𝜑𝑗𝑋) → (𝐺𝑗) ∈ 𝑆)
402feqmptd 6249 . . . . 5 (𝜑𝐺 = (𝑗𝑋 ↦ (𝐺𝑗)))
4111feqmptd 6249 . . . . 5 (𝜑𝑀 = (𝑘𝑆 ↦ (𝑀𝑘)))
42 fveq2 6191 . . . . 5 (𝑘 = (𝐺𝑗) → (𝑀𝑘) = (𝑀‘(𝐺𝑗)))
4339, 40, 41, 42fmptco 6396 . . . 4 (𝜑 → (𝑀𝐺) = (𝑗𝑋 ↦ (𝑀‘(𝐺𝑗))))
4443fveq2d 6195 . . 3 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
45 nfv 1843 . . . . 5 𝑗𝜑
46 meadjiunlem.y . . . . . 6 𝑌 = {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅}
47 ssrab2 3687 . . . . . . 7 {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋
4847a1i 11 . . . . . 6 (𝜑 → {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ⊆ 𝑋)
4946, 48syl5eqss 3649 . . . . 5 (𝜑𝑌𝑋)
5011adantr 481 . . . . . 6 ((𝜑𝑗𝑌) → 𝑀:𝑆⟶(0[,]+∞))
512adantr 481 . . . . . . 7 ((𝜑𝑗𝑌) → 𝐺:𝑋𝑆)
5249sselda 3603 . . . . . . 7 ((𝜑𝑗𝑌) → 𝑗𝑋)
5351, 52ffvelrnd 6360 . . . . . 6 ((𝜑𝑗𝑌) → (𝐺𝑗) ∈ 𝑆)
5450, 53ffvelrnd 6360 . . . . 5 ((𝜑𝑗𝑌) → (𝑀‘(𝐺𝑗)) ∈ (0[,]+∞))
55 eldifi 3732 . . . . . . . . . . 11 (𝑗 ∈ (𝑋𝑌) → 𝑗𝑋)
5655ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑋)
57 fveq2 6191 . . . . . . . . . . . . . . 15 ((𝐺𝑗) = ∅ → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
5857adantl 482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = (𝑀‘∅))
599adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐺𝑗) = ∅) → 𝑀 ∈ Meas)
6059mea0 40671 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘∅) = 0)
6158, 60eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
6261ad4ant14 1293 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → (𝑀‘(𝐺𝑗)) = 0)
63 neneq 2800 . . . . . . . . . . . . 13 ((𝑀‘(𝐺𝑗)) ≠ 0 → ¬ (𝑀‘(𝐺𝑗)) = 0)
6463ad2antlr 763 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) ∧ (𝐺𝑗) = ∅) → ¬ (𝑀‘(𝐺𝑗)) = 0)
6562, 64pm2.65da 600 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ (𝐺𝑗) = ∅)
6665neqned 2801 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝐺𝑗) ≠ ∅)
6756, 66jca 554 . . . . . . . . 9 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
68 fveq2 6191 . . . . . . . . . . 11 (𝑖 = 𝑗 → (𝐺𝑖) = (𝐺𝑗))
6968neeq1d 2853 . . . . . . . . . 10 (𝑖 = 𝑗 → ((𝐺𝑖) ≠ ∅ ↔ (𝐺𝑗) ≠ ∅))
7069elrab 3363 . . . . . . . . 9 (𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑗𝑋 ∧ (𝐺𝑗) ≠ ∅))
7167, 70sylibr 224 . . . . . . . 8 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
7271, 46syl6eleqr 2712 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → 𝑗𝑌)
73 eldifn 3733 . . . . . . . 8 (𝑗 ∈ (𝑋𝑌) → ¬ 𝑗𝑌)
7473ad2antlr 763 . . . . . . 7 (((𝜑𝑗 ∈ (𝑋𝑌)) ∧ (𝑀‘(𝐺𝑗)) ≠ 0) → ¬ 𝑗𝑌)
7572, 74pm2.65da 600 . . . . . 6 ((𝜑𝑗 ∈ (𝑋𝑌)) → ¬ (𝑀‘(𝐺𝑗)) ≠ 0)
76 nne 2798 . . . . . 6 (¬ (𝑀‘(𝐺𝑗)) ≠ 0 ↔ (𝑀‘(𝐺𝑗)) = 0)
7775, 76sylib 208 . . . . 5 ((𝜑𝑗 ∈ (𝑋𝑌)) → (𝑀‘(𝐺𝑗)) = 0)
7845, 3, 49, 54, 77sge0ss 40629 . . . 4 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))))
7978eqcomd 2628 . . 3 (𝜑 → (Σ^‘(𝑗𝑋 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
803, 49ssexd 4805 . . . . 5 (𝜑𝑌 ∈ V)
81 nfv 1843 . . . . . . . . 9 𝑖𝜑
82 eqid 2622 . . . . . . . . 9 (𝑖𝑌 ↦ (𝐺𝑖)) = (𝑖𝑌 ↦ (𝐺𝑖))
832ffnd 6046 . . . . . . . . . . . . 13 (𝜑𝐺 Fn 𝑋)
84 dffn3 6054 . . . . . . . . . . . . 13 (𝐺 Fn 𝑋𝐺:𝑋⟶ran 𝐺)
8583, 84sylib 208 . . . . . . . . . . . 12 (𝜑𝐺:𝑋⟶ran 𝐺)
8685adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝐺:𝑋⟶ran 𝐺)
8749sselda 3603 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → 𝑖𝑋)
8886, 87ffvelrnd 6360 . . . . . . . . . 10 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ ran 𝐺)
8946eleq2i 2693 . . . . . . . . . . . . . . 15 (𝑖𝑌𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅})
90 rabid 3116 . . . . . . . . . . . . . . 15 (𝑖 ∈ {𝑖𝑋 ∣ (𝐺𝑖) ≠ ∅} ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9189, 90bitri 264 . . . . . . . . . . . . . 14 (𝑖𝑌 ↔ (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9291biimpi 206 . . . . . . . . . . . . 13 (𝑖𝑌 → (𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅))
9392simprd 479 . . . . . . . . . . . 12 (𝑖𝑌 → (𝐺𝑖) ≠ ∅)
9493adantl 482 . . . . . . . . . . 11 ((𝜑𝑖𝑌) → (𝐺𝑖) ≠ ∅)
95 nelsn 4212 . . . . . . . . . . 11 ((𝐺𝑖) ≠ ∅ → ¬ (𝐺𝑖) ∈ {∅})
9694, 95syl 17 . . . . . . . . . 10 ((𝜑𝑖𝑌) → ¬ (𝐺𝑖) ∈ {∅})
9788, 96eldifd 3585 . . . . . . . . 9 ((𝜑𝑖𝑌) → (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
98 meadjiunlem.dj . . . . . . . . . 10 (𝜑Disj 𝑖𝑋 (𝐺𝑖))
99 disjss1 4626 . . . . . . . . . 10 (𝑌𝑋 → (Disj 𝑖𝑋 (𝐺𝑖) → Disj 𝑖𝑌 (𝐺𝑖)))
10049, 98, 99sylc 65 . . . . . . . . 9 (𝜑Disj 𝑖𝑌 (𝐺𝑖))
10181, 82, 97, 94, 100disjf1 39369 . . . . . . . 8 (𝜑 → (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅}))
1022, 49feqresmpt 6250 . . . . . . . . 9 (𝜑 → (𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)))
103 f1eq1 6096 . . . . . . . . 9 ((𝐺𝑌) = (𝑖𝑌 ↦ (𝐺𝑖)) → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
104102, 103syl 17 . . . . . . . 8 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ↔ (𝑖𝑌 ↦ (𝐺𝑖)):𝑌1-1→(ran 𝐺 ∖ {∅})))
105101, 104mpbird 247 . . . . . . 7 (𝜑 → (𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}))
106102rneqd 5353 . . . . . . . . 9 (𝜑 → ran (𝐺𝑌) = ran (𝑖𝑌 ↦ (𝐺𝑖)))
10797ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}))
10882rnmptss 6392 . . . . . . . . . 10 (∀𝑖𝑌 (𝐺𝑖) ∈ (ran 𝐺 ∖ {∅}) → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
109107, 108syl 17 . . . . . . . . 9 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) ⊆ (ran 𝐺 ∖ {∅}))
110106, 109eqsstrd 3639 . . . . . . . 8 (𝜑 → ran (𝐺𝑌) ⊆ (ran 𝐺 ∖ {∅}))
111 simpl 473 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝜑)
112 eldifi 3732 . . . . . . . . . . . 12 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ∈ ran 𝐺)
113112adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran 𝐺)
114 eldifsni 4320 . . . . . . . . . . . 12 (𝑥 ∈ (ran 𝐺 ∖ {∅}) → 𝑥 ≠ ∅)
115114adantl 482 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ≠ ∅)
116 simpr 477 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ran 𝐺) → 𝑥 ∈ ran 𝐺)
117 fvelrnb 6243 . . . . . . . . . . . . . . . 16 (𝐺 Fn 𝑋 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
11883, 117syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
119118adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ran 𝐺) → (𝑥 ∈ ran 𝐺 ↔ ∃𝑖𝑋 (𝐺𝑖) = 𝑥))
120116, 119mpbid 222 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ran 𝐺) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
1211203adant3 1081 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → ∃𝑖𝑋 (𝐺𝑖) = 𝑥)
122 id 22 . . . . . . . . . . . . . . . . . 18 ((𝐺𝑖) = 𝑥 → (𝐺𝑖) = 𝑥)
123122eqcomd 2628 . . . . . . . . . . . . . . . . 17 ((𝐺𝑖) = 𝑥𝑥 = (𝐺𝑖))
1241233ad2ant3 1084 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 = (𝐺𝑖))
125 simp1l 1085 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝜑)
126 simp2 1062 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑖𝑋)
127 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) = 𝑥)
128 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → 𝑥 ≠ ∅)
129127, 128eqnetrd 2861 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ≠ ∅ ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
130129adantll 750 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ≠ ∅) ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
1311303adant2 1080 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ≠ ∅)
13291biimpri 218 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → 𝑖𝑌)
133 fvexd 6203 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ V)
13482elrnmpt1 5374 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑌 ∧ (𝐺𝑖) ∈ V) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
135132, 133, 134syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
1361353adant1 1079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝑖𝑌 ↦ (𝐺𝑖)))
137106eqcomd 2628 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
1381373ad2ant1 1082 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → ran (𝑖𝑌 ↦ (𝐺𝑖)) = ran (𝐺𝑌))
139136, 138eleqtrd 2703 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖𝑋 ∧ (𝐺𝑖) ≠ ∅) → (𝐺𝑖) ∈ ran (𝐺𝑌))
140125, 126, 131, 139syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → (𝐺𝑖) ∈ ran (𝐺𝑌))
141124, 140eqeltrd 2701 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ≠ ∅) ∧ 𝑖𝑋 ∧ (𝐺𝑖) = 𝑥) → 𝑥 ∈ ran (𝐺𝑌))
1421413exp 1264 . . . . . . . . . . . . . 14 ((𝜑𝑥 ≠ ∅) → (𝑖𝑋 → ((𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌))))
143142rexlimdv 3030 . . . . . . . . . . . . 13 ((𝜑𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
1441433adant2 1080 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → (∃𝑖𝑋 (𝐺𝑖) = 𝑥𝑥 ∈ ran (𝐺𝑌)))
145121, 144mpd 15 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ran 𝐺𝑥 ≠ ∅) → 𝑥 ∈ ran (𝐺𝑌))
146111, 113, 115, 145syl3anc 1326 . . . . . . . . . 10 ((𝜑𝑥 ∈ (ran 𝐺 ∖ {∅})) → 𝑥 ∈ ran (𝐺𝑌))
147146ralrimiva 2966 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ (ran 𝐺 ∖ {∅})𝑥 ∈ ran (𝐺𝑌))
148 dfss3 3592 . . . . . . . . 9 ((ran 𝐺 ∖ {∅}) ⊆ ran (𝐺𝑌) ↔ ∀𝑥 ∈ (ran 𝐺 ∖ {∅})𝑥 ∈ ran (𝐺𝑌))
149147, 148sylibr 224 . . . . . . . 8 (𝜑 → (ran 𝐺 ∖ {∅}) ⊆ ran (𝐺𝑌))
150110, 149eqssd 3620 . . . . . . 7 (𝜑 → ran (𝐺𝑌) = (ran 𝐺 ∖ {∅}))
151105, 150jca 554 . . . . . 6 (𝜑 → ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
152 dff1o5 6146 . . . . . 6 ((𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}) ↔ ((𝐺𝑌):𝑌1-1→(ran 𝐺 ∖ {∅}) ∧ ran (𝐺𝑌) = (ran 𝐺 ∖ {∅})))
153151, 152sylibr 224 . . . . 5 (𝜑 → (𝐺𝑌):𝑌1-1-onto→(ran 𝐺 ∖ {∅}))
154 fvres 6207 . . . . . 6 (𝑗𝑌 → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
155154adantl 482 . . . . 5 ((𝜑𝑗𝑌) → ((𝐺𝑌)‘𝑗) = (𝐺𝑗))
1561, 45, 42, 80, 153, 155, 18sge0f1o 40599 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))) = (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))))
157156eqcomd 2628 . . 3 (𝜑 → (Σ^‘(𝑗𝑌 ↦ (𝑀‘(𝐺𝑗)))) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15844, 79, 1573eqtrd 2660 . 2 (𝜑 → (Σ^‘(𝑀𝐺)) = (Σ^‘(𝑘 ∈ (ran 𝐺 ∖ {∅}) ↦ (𝑀𝑘))))
15936, 38, 1583eqtr4d 2666 1 (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  {csn 4177  Disj wdisj 4620  cmpt 4729  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  0cc0 9936  +∞cpnf 10071  [,]cicc 12178  Σ^csumge0 40579  Meascmea 40666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xadd 11947  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580  df-mea 40667
This theorem is referenced by:  meadjiun  40683
  Copyright terms: Public domain W3C validator