| Step | Hyp | Ref
| Expression |
| 1 | | nn0uz 11722 |
. 2
⊢
ℕ0 = (ℤ≥‘0) |
| 2 | | 0zd 11389 |
. 2
⊢ (𝜑 → 0 ∈
ℤ) |
| 3 | | seqex 12803 |
. . 3
⊢ seq0( + ,
𝐻) ∈
V |
| 4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → seq0( + , 𝐻) ∈ V) |
| 5 | | mertens.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 6 | | fzfid 12772 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(0...𝑘) ∈
Fin) |
| 7 | | simpl 473 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝜑) |
| 8 | | elfznn0 12433 |
. . . . . . . 8
⊢ (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0) |
| 9 | | mertens.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈
ℂ) |
| 10 | 7, 8, 9 | syl2an 494 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ) |
| 11 | | fznn0sub 12373 |
. . . . . . . . 9
⊢ (𝑗 ∈ (0...𝑘) → (𝑘 − 𝑗) ∈
ℕ0) |
| 12 | 11 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − 𝑗) ∈
ℕ0) |
| 13 | | mertens.4 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 14 | | mertens.5 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 15 | 13, 14 | eqeltrd 2701 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 16 | 15 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺‘𝑘) ∈ ℂ) |
| 17 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → (𝐺‘𝑘) = (𝐺‘𝑖)) |
| 18 | 17 | eleq1d 2686 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → ((𝐺‘𝑘) ∈ ℂ ↔ (𝐺‘𝑖) ∈ ℂ)) |
| 19 | 18 | cbvralv 3171 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ0 (𝐺‘𝑘) ∈ ℂ ↔ ∀𝑖 ∈ ℕ0
(𝐺‘𝑖) ∈ ℂ) |
| 20 | 16, 19 | sylib 208 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
| 21 | 20 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑖 ∈ ℕ0 (𝐺‘𝑖) ∈ ℂ) |
| 22 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑘 − 𝑗) → (𝐺‘𝑖) = (𝐺‘(𝑘 − 𝑗))) |
| 23 | 22 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑖 = (𝑘 − 𝑗) → ((𝐺‘𝑖) ∈ ℂ ↔ (𝐺‘(𝑘 − 𝑗)) ∈ ℂ)) |
| 24 | 23 | rspcv 3305 |
. . . . . . . 8
⊢ ((𝑘 − 𝑗) ∈ ℕ0 →
(∀𝑖 ∈
ℕ0 (𝐺‘𝑖) ∈ ℂ → (𝐺‘(𝑘 − 𝑗)) ∈ ℂ)) |
| 25 | 12, 21, 24 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − 𝑗)) ∈ ℂ) |
| 26 | 10, 25 | mulcld 10060 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 27 | 6, 26 | fsumcl 14464 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 28 | 5, 27 | eqeltrd 2701 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐻‘𝑘) ∈ ℂ) |
| 29 | 1, 2, 28 | serf 12829 |
. . 3
⊢ (𝜑 → seq0( + , 𝐻):ℕ0⟶ℂ) |
| 30 | 29 | ffvelrnda 6359 |
. 2
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (seq0( +
, 𝐻)‘𝑚) ∈
ℂ) |
| 31 | | mertens.1 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) = 𝐴) |
| 32 | 31 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐹‘𝑗) = 𝐴) |
| 33 | | mertens.2 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘𝐴)) |
| 34 | 33 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ (𝐾‘𝑗) = (abs‘𝐴)) |
| 35 | 9 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0)
→ 𝐴 ∈
ℂ) |
| 36 | 13 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐺‘𝑘) = 𝐵) |
| 37 | 14 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ 𝐵 ∈
ℂ) |
| 38 | 5 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0)
→ (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 39 | | mertens.7 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐾) ∈ dom ⇝
) |
| 40 | 39 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐾) ∈ dom ⇝
) |
| 41 | | mertens.8 |
. . . . . 6
⊢ (𝜑 → seq0( + , 𝐺) ∈ dom ⇝
) |
| 42 | 41 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → seq0( + ,
𝐺) ∈ dom ⇝
) |
| 43 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
| 44 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑘 → (𝐺‘𝑙) = (𝐺‘𝑘)) |
| 45 | 44 | cbvsumv 14426 |
. . . . . . . . . . 11
⊢
Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) |
| 46 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑛 → (ℤ≥‘(𝑖 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
| 48 | 47 | sumeq1d 14431 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 49 | 45, 48 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 50 | 49 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 51 | 50 | eqeq2d 2632 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → (𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ 𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 52 | 51 | cbvrexv 3172 |
. . . . . . 7
⊢
(∃𝑖 ∈
(0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈
(ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 53 | | eqeq1 2626 |
. . . . . . . 8
⊢ (𝑢 = 𝑧 → (𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ 𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 54 | 53 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑢 = 𝑧 → (∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 55 | 52, 54 | syl5bb 272 |
. . . . . 6
⊢ (𝑢 = 𝑧 → (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)))) |
| 56 | 55 | cbvabv 2747 |
. . . . 5
⊢ {𝑢 ∣ ∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ≥‘(𝑖 + 1))(𝐺‘𝑙))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))} |
| 57 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝐾‘𝑖) = (𝐾‘𝑗)) |
| 58 | 57 | cbvsumv 14426 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) = Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) |
| 59 | 58 | oveq1i 6660 |
. . . . . . . . . 10
⊢
(Σ𝑖 ∈
ℕ0 (𝐾‘𝑖) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1) |
| 60 | 59 | oveq2i 6661 |
. . . . . . . . 9
⊢ ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0
(𝐾‘𝑖) + 1)) = ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) |
| 61 | 60 | breq2i 4661 |
. . . . . . . 8
⊢
((abs‘Σ𝑖
∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 62 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑘 → (𝐺‘𝑖) = (𝐺‘𝑘)) |
| 63 | 62 | cbvsumv 14426 |
. . . . . . . . . . 11
⊢
Σ𝑖 ∈
(ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) |
| 64 | | oveq1 6657 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑛 → (𝑢 + 1) = (𝑛 + 1)) |
| 65 | 64 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑛 → (ℤ≥‘(𝑢 + 1)) =
(ℤ≥‘(𝑛 + 1))) |
| 66 | 65 | sumeq1d 14431 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑛 → Σ𝑘 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑘) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 67 | 63, 66 | syl5eq 2668 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑛 → Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖) = Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) |
| 68 | 67 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑢 = 𝑛 → (abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) = (abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘))) |
| 69 | 68 | breq1d 4663 |
. . . . . . . 8
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 70 | 61, 69 | syl5bb 272 |
. . . . . . 7
⊢ (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ (abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 71 | 70 | cbvralv 3171 |
. . . . . 6
⊢
(∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1)) ↔ ∀𝑛 ∈ (ℤ≥‘𝑠)(abs‘Σ𝑘 ∈
(ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1))) |
| 72 | 71 | anbi2i 730 |
. . . . 5
⊢ ((𝑠 ∈ ℕ ∧
∀𝑢 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑖 ∈ (ℤ≥‘(𝑢 + 1))(𝐺‘𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾‘𝑖) + 1))) ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈
(ℤ≥‘𝑠)(abs‘Σ𝑘 ∈ (ℤ≥‘(𝑛 + 1))(𝐺‘𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾‘𝑗) + 1)))) |
| 73 | 32, 34, 35, 36, 37, 38, 40, 42, 43, 56, 72 | mertenslem2 14617 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥) |
| 74 | | eluznn0 11757 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ0
∧ 𝑚 ∈
(ℤ≥‘𝑦)) → 𝑚 ∈ ℕ0) |
| 75 | | fzfid 12772 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(0...𝑚) ∈
Fin) |
| 76 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑) |
| 77 | | elfznn0 12433 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0) |
| 78 | 77 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℕ0) |
| 79 | 1, 2, 13, 14, 41 | isumcl 14492 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
| 80 | 79 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
Σ𝑘 ∈
ℕ0 𝐵
∈ ℂ) |
| 81 | 31, 9 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐹‘𝑗) ∈ ℂ) |
| 82 | 80, 81 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈
ℂ) |
| 83 | 76, 78, 82 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) ∈ ℂ) |
| 84 | | fzfid 12772 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(𝑚 − 𝑗)) ∈ Fin) |
| 85 | | simplll 798 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝜑) |
| 86 | 77 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑗 ∈ ℕ0) |
| 87 | 85, 86, 9 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝐴 ∈ ℂ) |
| 88 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...(𝑚 − 𝑗)) → 𝑘 ∈ ℕ0) |
| 89 | 88 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → 𝑘 ∈ ℕ0) |
| 90 | 85, 89, 15 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) ∈ ℂ) |
| 91 | 87, 90 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 92 | 84, 91 | fsumcl 14464 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 93 | 75, 83, 92 | fsumsub 14520 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
| 94 | 76, 78, 9 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ) |
| 95 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ) |
| 96 | 84, 90 | fsumcl 14464 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) ∈ ℂ) |
| 97 | 94, 95, 96 | subdid 10486 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)))) |
| 98 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘((𝑚 − 𝑗) + 1)) =
(ℤ≥‘((𝑚 − 𝑗) + 1)) |
| 99 | | fznn0sub 12373 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ (0...𝑚) → (𝑚 − 𝑗) ∈
ℕ0) |
| 100 | 99 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈
ℕ0) |
| 101 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 − 𝑗) ∈ ℕ0 → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈
ℕ0) |
| 103 | 76, 13 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) = 𝐵) |
| 104 | 76, 14 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈
ℂ) |
| 105 | 41 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ ) |
| 106 | 1, 98, 102, 103, 104, 105 | isumsplit 14572 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 107 | 100 | nn0cnd 11353 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚 − 𝑗) ∈ ℂ) |
| 108 | | ax-1cn 9994 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ∈
ℂ |
| 109 | | pncan 10287 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑚 − 𝑗) ∈ ℂ ∧ 1 ∈ ℂ)
→ (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
| 110 | 107, 108,
109 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (((𝑚 − 𝑗) + 1) − 1) = (𝑚 − 𝑗)) |
| 111 | 110 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(((𝑚 − 𝑗) + 1) − 1)) = (0...(𝑚 − 𝑗))) |
| 112 | 111 | sumeq1d 14431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
| 113 | 85, 89, 13 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗))) → (𝐺‘𝑘) = 𝐵) |
| 114 | 113 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))𝐵) |
| 115 | 112, 114 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) |
| 116 | 115 | oveq1d 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ (0...(((𝑚 − 𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 117 | 106, 116 | eqtrd 2656 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 118 | 117 | oveq1d 6665 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = ((Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) |
| 119 | 102 | nn0zd 11480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚 − 𝑗) + 1) ∈ ℤ) |
| 120 | | simplll 798 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝜑) |
| 121 | | eluznn0 11757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑚 − 𝑗) + 1) ∈ ℕ0 ∧ 𝑘 ∈
(ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 122 | 102, 121 | sylan 488 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝑘 ∈ ℕ0) |
| 123 | 120, 122,
13 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → (𝐺‘𝑘) = 𝐵) |
| 124 | 120, 122,
14 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))) → 𝐵 ∈ ℂ) |
| 125 | 103, 104 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺‘𝑘) ∈ ℂ) |
| 126 | 1, 102, 125 | iserex 14387 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )) |
| 127 | 105, 126 | mpbid 222 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚 − 𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ) |
| 128 | 98, 119, 123, 124, 127 | isumcl 14492 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵 ∈ ℂ) |
| 129 | 96, 128 | pncan2d 10394 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘) + Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
| 130 | 118, 129 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵) |
| 131 | 130 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 132 | 9, 80 | mulcomd 10061 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · 𝐴)) |
| 133 | 31 | oveq2d 6666 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴)) |
| 134 | 132, 133 | eqtr4d 2659 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0
𝐵) = (Σ𝑘 ∈ ℕ0
𝐵 · (𝐹‘𝑗))) |
| 135 | 76, 78, 134 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 136 | 84, 94, 90 | fsummulc2 14516 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘)) = Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) |
| 137 | 135, 136 | oveq12d 6668 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐺‘𝑘))) = ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)))) |
| 138 | 97, 131, 137 | 3eqtr3rd 2665 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 139 | 138 | sumeq2dv 14433 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 140 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝐹‘𝑛) = (𝐹‘𝑗)) |
| 141 | 140 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 142 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) = (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))) |
| 143 | | ovex 6678 |
. . . . . . . . . . . . . . . 16
⊢
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑗)) ∈ V |
| 144 | 141, 142,
143 | fvmpt 6282 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 145 | 78, 144 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗))) |
| 146 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
ℕ0) |
| 147 | 146, 1 | syl6eleq 2711 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → 𝑚 ∈
(ℤ≥‘0)) |
| 148 | 145, 147,
83 | fsumser 14461 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚)) |
| 149 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
| 150 | 149 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑘 → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘𝑘))) |
| 151 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐺‘𝑛) = (𝐺‘(𝑘 − 𝑗))) |
| 152 | 151 | oveq2d 6666 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑘 − 𝑗) → (𝐴 · (𝐺‘𝑛)) = (𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 153 | 91 | anasss 679 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ (𝑗 ∈ (0...𝑚) ∧ 𝑘 ∈ (0...(𝑚 − 𝑗)))) → (𝐴 · (𝐺‘𝑘)) ∈ ℂ) |
| 154 | 150, 152,
153 | fsum0diag2 14515 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 155 | | simpll 790 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝜑) |
| 156 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0) |
| 157 | 156 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝑘 ∈ ℕ0) |
| 158 | 155, 157,
5 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → (𝐻‘𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗)))) |
| 159 | 155, 157,
27 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) ∈ ℂ) |
| 160 | 158, 147,
159 | fsumser 14461 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑘 ∈ (0...𝑚)Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘 − 𝑗))) = (seq0( + , 𝐻)‘𝑚)) |
| 161 | 154, 160 | eqtrd 2656 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘)) = (seq0( + , 𝐻)‘𝑚)) |
| 162 | 148, 161 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑗)) − Σ𝑗 ∈ (0...𝑚)Σ𝑘 ∈ (0...(𝑚 − 𝑗))(𝐴 · (𝐺‘𝑘))) = ((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) |
| 163 | 93, 139, 162 | 3eqtr3rd 2665 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((seq0( +
, (𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) |
| 164 | 163 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
(abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) = (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵))) |
| 165 | 164 | breq1d 4663 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) →
((abs‘((seq0( + , (𝑛
∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 166 | 74, 165 | sylan2 491 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑦 ∈ ℕ0 ∧ 𝑚 ∈
(ℤ≥‘𝑦))) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 167 | 166 | anassrs 680 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝑚 ∈
(ℤ≥‘𝑦)) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 168 | 167 | ralbidva 2985 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℕ0) →
(∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 169 | 168 | rexbidva 3049 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 170 | 169 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0 ∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ≥‘((𝑚 − 𝑗) + 1))𝐵)) < 𝑥)) |
| 171 | 73, 170 | mpbird 247 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑦 ∈
ℕ0 ∀𝑚 ∈ (ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
| 172 | 171 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ0
∀𝑚 ∈
(ℤ≥‘𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥) |
| 173 | 31 | fveq2d 6195 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) →
(abs‘(𝐹‘𝑗)) = (abs‘𝐴)) |
| 174 | 33, 173 | eqtr4d 2659 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ0) → (𝐾‘𝑗) = (abs‘(𝐹‘𝑗))) |
| 175 | 1, 2, 174, 81, 39 | abscvgcvg 14551 |
. . . . 5
⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝
) |
| 176 | 1, 2, 31, 9, 175 | isumclim2 14489 |
. . . 4
⊢ (𝜑 → seq0( + , 𝐹) ⇝ Σ𝑗 ∈ ℕ0
𝐴) |
| 177 | 81 | ralrimiva 2966 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ ℕ0 (𝐹‘𝑗) ∈ ℂ) |
| 178 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
| 179 | 178 | eleq1d 2686 |
. . . . . 6
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑗) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 180 | 179 | rspccva 3308 |
. . . . 5
⊢
((∀𝑗 ∈
ℕ0 (𝐹‘𝑗) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
| 181 | 177, 180 | sylan 488 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → (𝐹‘𝑚) ∈ ℂ) |
| 182 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
| 183 | 182 | oveq2d 6666 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 184 | | ovex 6678 |
. . . . . 6
⊢
(Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑚)) ∈ V |
| 185 | 183, 142,
184 | fvmpt 6282 |
. . . . 5
⊢ (𝑚 ∈ ℕ0
→ ((𝑛 ∈
ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 186 | 185 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹‘𝑚))) |
| 187 | 1, 2, 79, 176, 181, 186 | isermulc2 14388 |
. . 3
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑘 ∈ ℕ0
𝐵 · Σ𝑗 ∈ ℕ0
𝐴)) |
| 188 | 1, 2, 31, 9, 175 | isumcl 14492 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ ℕ0 𝐴 ∈ ℂ) |
| 189 | 79, 188 | mulcomd 10061 |
. . 3
⊢ (𝜑 → (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴) = (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵)) |
| 190 | 187, 189 | breqtrd 4679 |
. 2
⊢ (𝜑 → seq0( + , (𝑛 ∈ ℕ0
↦ (Σ𝑘 ∈
ℕ0 𝐵
· (𝐹‘𝑛)))) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |
| 191 | 1, 2, 4, 30, 172, 190 | 2clim 14303 |
1
⊢ (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0
𝐴 · Σ𝑘 ∈ ℕ0
𝐵)) |