MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mertens Structured version   Visualization version   GIF version

Theorem mertens 14618
Description: Mertens' theorem. If 𝐴(𝑗) is an absolutely convergent series and 𝐵(𝑘) is convergent, then 𝑗 ∈ ℕ0𝐴(𝑗) · Σ𝑘 ∈ ℕ0𝐵(𝑘)) = Σ𝑘 ∈ ℕ0Σ𝑗 ∈ (0...𝑘)(𝐴(𝑗) · 𝐵(𝑘𝑗)) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
mertens.1 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
mertens.2 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
mertens.3 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
mertens.4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
mertens.5 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
mertens.6 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
mertens.7 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
mertens.8 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
mertens (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
Distinct variable groups:   𝐵,𝑗   𝑗,𝑘,𝐺   𝜑,𝑗,𝑘   𝐴,𝑘   𝑗,𝐾,𝑘   𝑗,𝐹   𝑘,𝐻
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐹(𝑘)   𝐻(𝑗)

Proof of Theorem mertens
Dummy variables 𝑚 𝑛 𝑠 𝑥 𝑦 𝑧 𝑖 𝑙 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11722 . 2 0 = (ℤ‘0)
2 0zd 11389 . 2 (𝜑 → 0 ∈ ℤ)
3 seqex 12803 . . 3 seq0( + , 𝐻) ∈ V
43a1i 11 . 2 (𝜑 → seq0( + , 𝐻) ∈ V)
5 mertens.6 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
6 fzfid 12772 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
7 simpl 473 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝜑)
8 elfznn0 12433 . . . . . . . 8 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
9 mertens.3 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
107, 8, 9syl2an 494 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
11 fznn0sub 12373 . . . . . . . . 9 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
1211adantl 482 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
13 mertens.4 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
14 mertens.5 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
1513, 14eqeltrd 2701 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1615ralrimiva 2966 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ0 (𝐺𝑘) ∈ ℂ)
17 fveq2 6191 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝐺𝑘) = (𝐺𝑖))
1817eleq1d 2686 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑖) ∈ ℂ))
1918cbvralv 3171 . . . . . . . . . 10 (∀𝑘 ∈ ℕ0 (𝐺𝑘) ∈ ℂ ↔ ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
2016, 19sylib 208 . . . . . . . . 9 (𝜑 → ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
2120ad2antrr 762 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ)
22 fveq2 6191 . . . . . . . . . 10 (𝑖 = (𝑘𝑗) → (𝐺𝑖) = (𝐺‘(𝑘𝑗)))
2322eleq1d 2686 . . . . . . . . 9 (𝑖 = (𝑘𝑗) → ((𝐺𝑖) ∈ ℂ ↔ (𝐺‘(𝑘𝑗)) ∈ ℂ))
2423rspcv 3305 . . . . . . . 8 ((𝑘𝑗) ∈ ℕ0 → (∀𝑖 ∈ ℕ0 (𝐺𝑖) ∈ ℂ → (𝐺‘(𝑘𝑗)) ∈ ℂ))
2512, 21, 24sylc 65 . . . . . . 7 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
2610, 25mulcld 10060 . . . . . 6 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
276, 26fsumcl 14464 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
285, 27eqeltrd 2701 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) ∈ ℂ)
291, 2, 28serf 12829 . . 3 (𝜑 → seq0( + , 𝐻):ℕ0⟶ℂ)
3029ffvelrnda 6359 . 2 ((𝜑𝑚 ∈ ℕ0) → (seq0( + , 𝐻)‘𝑚) ∈ ℂ)
31 mertens.1 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
3231adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → (𝐹𝑗) = 𝐴)
33 mertens.2 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
3433adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘𝐴))
359adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ0) → 𝐴 ∈ ℂ)
3613adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
3714adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
385adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
39 mertens.7 . . . . . 6 (𝜑 → seq0( + , 𝐾) ∈ dom ⇝ )
4039adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → seq0( + , 𝐾) ∈ dom ⇝ )
41 mertens.8 . . . . . 6 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
4241adantr 481 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → seq0( + , 𝐺) ∈ dom ⇝ )
43 simpr 477 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
44 fveq2 6191 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝐺𝑙) = (𝐺𝑘))
4544cbvsumv 14426 . . . . . . . . . . 11 Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙) = Σ𝑘 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑘)
46 oveq1 6657 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (𝑖 + 1) = (𝑛 + 1))
4746fveq2d 6195 . . . . . . . . . . . 12 (𝑖 = 𝑛 → (ℤ‘(𝑖 + 1)) = (ℤ‘(𝑛 + 1)))
4847sumeq1d 14431 . . . . . . . . . . 11 (𝑖 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
4945, 48syl5eq 2668 . . . . . . . . . 10 (𝑖 = 𝑛 → Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
5049fveq2d 6195 . . . . . . . . 9 (𝑖 = 𝑛 → (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
5150eqeq2d 2632 . . . . . . . 8 (𝑖 = 𝑛 → (𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ 𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5251cbvrexv 3172 . . . . . . 7 (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
53 eqeq1 2626 . . . . . . . 8 (𝑢 = 𝑧 → (𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ 𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5453rexbidv 3052 . . . . . . 7 (𝑢 = 𝑧 → (∃𝑛 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5552, 54syl5bb 272 . . . . . 6 (𝑢 = 𝑧 → (∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙)) ↔ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))))
5655cbvabv 2747 . . . . 5 {𝑢 ∣ ∃𝑖 ∈ (0...(𝑠 − 1))𝑢 = (abs‘Σ𝑙 ∈ (ℤ‘(𝑖 + 1))(𝐺𝑙))} = {𝑧 ∣ ∃𝑛 ∈ (0...(𝑠 − 1))𝑧 = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))}
57 fveq2 6191 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝐾𝑖) = (𝐾𝑗))
5857cbvsumv 14426 . . . . . . . . . . 11 Σ𝑖 ∈ ℕ0 (𝐾𝑖) = Σ𝑗 ∈ ℕ0 (𝐾𝑗)
5958oveq1i 6660 . . . . . . . . . 10 𝑖 ∈ ℕ0 (𝐾𝑖) + 1) = (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)
6059oveq2i 6661 . . . . . . . . 9 ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) = ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))
6160breq2i 4661 . . . . . . . 8 ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ (abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
62 fveq2 6191 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (𝐺𝑖) = (𝐺𝑘))
6362cbvsumv 14426 . . . . . . . . . . 11 Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖) = Σ𝑘 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑘)
64 oveq1 6657 . . . . . . . . . . . . 13 (𝑢 = 𝑛 → (𝑢 + 1) = (𝑛 + 1))
6564fveq2d 6195 . . . . . . . . . . . 12 (𝑢 = 𝑛 → (ℤ‘(𝑢 + 1)) = (ℤ‘(𝑛 + 1)))
6665sumeq1d 14431 . . . . . . . . . . 11 (𝑢 = 𝑛 → Σ𝑘 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑘) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
6763, 66syl5eq 2668 . . . . . . . . . 10 (𝑢 = 𝑛 → Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖) = Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘))
6867fveq2d 6195 . . . . . . . . 9 (𝑢 = 𝑛 → (abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) = (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)))
6968breq1d 4663 . . . . . . . 8 (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7061, 69syl5bb 272 . . . . . . 7 (𝑢 = 𝑛 → ((abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ (abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7170cbvralv 3171 . . . . . 6 (∀𝑢 ∈ (ℤ𝑠)(abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1)) ↔ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1)))
7271anbi2i 730 . . . . 5 ((𝑠 ∈ ℕ ∧ ∀𝑢 ∈ (ℤ𝑠)(abs‘Σ𝑖 ∈ (ℤ‘(𝑢 + 1))(𝐺𝑖)) < ((𝑥 / 2) / (Σ𝑖 ∈ ℕ0 (𝐾𝑖) + 1))) ↔ (𝑠 ∈ ℕ ∧ ∀𝑛 ∈ (ℤ𝑠)(abs‘Σ𝑘 ∈ (ℤ‘(𝑛 + 1))(𝐺𝑘)) < ((𝑥 / 2) / (Σ𝑗 ∈ ℕ0 (𝐾𝑗) + 1))))
7332, 34, 35, 36, 37, 38, 40, 42, 43, 56, 72mertenslem2 14617 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥)
74 eluznn0 11757 . . . . . . . . 9 ((𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)) → 𝑚 ∈ ℕ0)
75 fzfid 12772 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → (0...𝑚) ∈ Fin)
76 simpll 790 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝜑)
77 elfznn0 12433 . . . . . . . . . . . . . . 15 (𝑗 ∈ (0...𝑚) → 𝑗 ∈ ℕ0)
7877adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝑗 ∈ ℕ0)
791, 2, 13, 14, 41isumcl 14492 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
8079adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
8131, 9eqeltrd 2701 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) ∈ ℂ)
8280, 81mulcld 10060 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ)
8376, 78, 82syl2anc 693 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ ℂ)
84 fzfid 12772 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(𝑚𝑗)) ∈ Fin)
85 simplll 798 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝜑)
8677ad2antlr 763 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝑗 ∈ ℕ0)
8785, 86, 9syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝐴 ∈ ℂ)
88 elfznn0 12433 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...(𝑚𝑗)) → 𝑘 ∈ ℕ0)
8988adantl 482 . . . . . . . . . . . . . . . 16 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → 𝑘 ∈ ℕ0)
9085, 89, 15syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐺𝑘) ∈ ℂ)
9187, 90mulcld 10060 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐴 · (𝐺𝑘)) ∈ ℂ)
9284, 91fsumcl 14464 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) ∈ ℂ)
9375, 83, 92fsumsub 14520 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))))
9476, 78, 9syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → 𝐴 ∈ ℂ)
9579ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 ∈ ℂ)
9684, 90fsumcl 14464 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) ∈ ℂ)
9794, 95, 96subdid 10486 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))))
98 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (ℤ‘((𝑚𝑗) + 1)) = (ℤ‘((𝑚𝑗) + 1))
99 fznn0sub 12373 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (0...𝑚) → (𝑚𝑗) ∈ ℕ0)
10099adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℕ0)
101 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . 20 ((𝑚𝑗) ∈ ℕ0 → ((𝑚𝑗) + 1) ∈ ℕ0)
102100, 101syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℕ0)
10376, 13sylan 488 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) = 𝐵)
10476, 14sylan 488 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
10541ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq0( + , 𝐺) ∈ dom ⇝ )
1061, 98, 102, 103, 104, 105isumsplit 14572 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
107100nn0cnd 11353 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝑚𝑗) ∈ ℂ)
108 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
109 pncan 10287 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑚𝑗) ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑚𝑗) + 1) − 1) = (𝑚𝑗))
110107, 108, 109sylancl 694 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (((𝑚𝑗) + 1) − 1) = (𝑚𝑗))
111110oveq2d 6666 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (0...(((𝑚𝑗) + 1) − 1)) = (0...(𝑚𝑗)))
112111sumeq1d 14431 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚𝑗))𝐵)
11385, 89, 13syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (0...(𝑚𝑗))) → (𝐺𝑘) = 𝐵)
114113sumeq2dv 14433 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) = Σ𝑘 ∈ (0...(𝑚𝑗))𝐵)
115112, 114eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 = Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))
116115oveq1d 6665 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ (0...(((𝑚𝑗) + 1) − 1))𝐵 + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) = (Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
117106, 116eqtrd 2656 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ ℕ0 𝐵 = (Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
118117oveq1d 6665 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = ((Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)))
119102nn0zd 11480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑚𝑗) + 1) ∈ ℤ)
120 simplll 798 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝜑)
121 eluznn0 11757 . . . . . . . . . . . . . . . . . . . 20 ((((𝑚𝑗) + 1) ∈ ℕ0𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
122102, 121sylan 488 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝑘 ∈ ℕ0)
123120, 122, 13syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → (𝐺𝑘) = 𝐵)
124120, 122, 14syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))) → 𝐵 ∈ ℂ)
125103, 104eqeltrd 2701 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑘) ∈ ℂ)
1261, 102, 125iserex 14387 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (seq0( + , 𝐺) ∈ dom ⇝ ↔ seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ ))
127105, 126mpbid 222 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → seq((𝑚𝑗) + 1)( + , 𝐺) ∈ dom ⇝ )
12898, 119, 123, 124, 127isumcl 14492 . . . . . . . . . . . . . . . . 17 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵 ∈ ℂ)
12996, 128pncan2d 10394 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘) + Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
130118, 129eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)
131130oveq2d 6666 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · (Σ𝑘 ∈ ℕ0 𝐵 − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
1329, 80mulcomd 10061 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴))
13331oveq2d 6666 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ0) → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) = (Σ𝑘 ∈ ℕ0 𝐵 · 𝐴))
134132, 133eqtr4d 2659 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ ℕ0) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
13576, 78, 134syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ ℕ0 𝐵) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
13684, 94, 90fsummulc2 14516 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘)) = Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)))
137135, 136oveq12d 6668 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝐴 · Σ𝑘 ∈ ℕ0 𝐵) − (𝐴 · Σ𝑘 ∈ (0...(𝑚𝑗))(𝐺𝑘))) = ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))))
13897, 131, 1373eqtr3rd 2665 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = (𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
139138sumeq2dv 14433 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)((Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
140 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝐹𝑛) = (𝐹𝑗))
141140oveq2d 6666 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
142 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))) = (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))
143 ovex 6678 . . . . . . . . . . . . . . . 16 𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) ∈ V
144141, 142, 143fvmpt 6282 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
14578, 144syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑚)) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑗) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)))
146 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ ℕ0)
147146, 1syl6eleq 2711 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → 𝑚 ∈ (ℤ‘0))
148145, 147, 83fsumser 14461 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) = (seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚))
149 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
150149oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (𝐴 · (𝐺𝑛)) = (𝐴 · (𝐺𝑘)))
151 fveq2 6191 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘𝑗) → (𝐺𝑛) = (𝐺‘(𝑘𝑗)))
152151oveq2d 6666 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘𝑗) → (𝐴 · (𝐺𝑛)) = (𝐴 · (𝐺‘(𝑘𝑗))))
15391anasss 679 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ (𝑗 ∈ (0...𝑚) ∧ 𝑘 ∈ (0...(𝑚𝑗)))) → (𝐴 · (𝐺𝑘)) ∈ ℂ)
154150, 152, 153fsum0diag2 14515 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) = Σ𝑘 ∈ (0...𝑚𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
155 simpll 790 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝜑)
156 elfznn0 12433 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑚) → 𝑘 ∈ ℕ0)
157156adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → 𝑘 ∈ ℕ0)
158155, 157, 5syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))))
159155, 157, 27syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑚)) → Σ𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) ∈ ℂ)
160158, 147, 159fsumser 14461 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑚𝑗 ∈ (0...𝑘)(𝐴 · (𝐺‘(𝑘𝑗))) = (seq0( + , 𝐻)‘𝑚))
161154, 160eqtrd 2656 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘)) = (seq0( + , 𝐻)‘𝑚))
162148, 161oveq12d 6668 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑚)(Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑗)) − Σ𝑗 ∈ (0...𝑚𝑘 ∈ (0...(𝑚𝑗))(𝐴 · (𝐺𝑘))) = ((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)))
16393, 139, 1623eqtr3rd 2665 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ0) → ((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚)) = Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵))
164163fveq2d 6195 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ0) → (abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) = (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)))
165164breq1d 4663 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ0) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
16674, 165sylan2 491 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦))) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
167166anassrs 680 . . . . . . 7 (((𝜑𝑦 ∈ ℕ0) ∧ 𝑚 ∈ (ℤ𝑦)) → ((abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ (abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
168167ralbidva 2985 . . . . . 6 ((𝜑𝑦 ∈ ℕ0) → (∀𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∀𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
169168rexbidva 3049 . . . . 5 (𝜑 → (∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
170169adantr 481 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥 ↔ ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘Σ𝑗 ∈ (0...𝑚)(𝐴 · Σ𝑘 ∈ (ℤ‘((𝑚𝑗) + 1))𝐵)) < 𝑥))
17173, 170mpbird 247 . . 3 ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥)
172171ralrimiva 2966 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ0𝑚 ∈ (ℤ𝑦)(abs‘((seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛))))‘𝑚) − (seq0( + , 𝐻)‘𝑚))) < 𝑥)
17331fveq2d 6195 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐹𝑗)) = (abs‘𝐴))
17433, 173eqtr4d 2659 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐾𝑗) = (abs‘(𝐹𝑗)))
1751, 2, 174, 81, 39abscvgcvg 14551 . . . . 5 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
1761, 2, 31, 9, 175isumclim2 14489 . . . 4 (𝜑 → seq0( + , 𝐹) ⇝ Σ𝑗 ∈ ℕ0 𝐴)
17781ralrimiva 2966 . . . . 5 (𝜑 → ∀𝑗 ∈ ℕ0 (𝐹𝑗) ∈ ℂ)
178 fveq2 6191 . . . . . . 7 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
179178eleq1d 2686 . . . . . 6 (𝑗 = 𝑚 → ((𝐹𝑗) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
180179rspccva 3308 . . . . 5 ((∀𝑗 ∈ ℕ0 (𝐹𝑗) ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
181177, 180sylan 488 . . . 4 ((𝜑𝑚 ∈ ℕ0) → (𝐹𝑚) ∈ ℂ)
182 fveq2 6191 . . . . . . 7 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
183182oveq2d 6666 . . . . . 6 (𝑛 = 𝑚 → (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
184 ovex 6678 . . . . . 6 𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)) ∈ V
185183, 142, 184fvmpt 6282 . . . . 5 (𝑚 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
186185adantl 482 . . . 4 ((𝜑𝑚 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))‘𝑚) = (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑚)))
1871, 2, 79, 176, 181, 186isermulc2 14388 . . 3 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))) ⇝ (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴))
1881, 2, 31, 9, 175isumcl 14492 . . . 4 (𝜑 → Σ𝑗 ∈ ℕ0 𝐴 ∈ ℂ)
18979, 188mulcomd 10061 . . 3 (𝜑 → (Σ𝑘 ∈ ℕ0 𝐵 · Σ𝑗 ∈ ℕ0 𝐴) = (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
190187, 189breqtrd 4679 . 2 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (Σ𝑘 ∈ ℕ0 𝐵 · (𝐹𝑛)))) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
1911, 2, 4, 30, 172, 1902clim 14303 1 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 𝐴 · Σ𝑘 ∈ ℕ0 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cuz 11687  +crp 11832  ...cfz 12326  seqcseq 12801  abscabs 13974  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417
This theorem is referenced by:  efaddlem  14823
  Copyright terms: Public domain W3C validator