MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efaddlem Structured version   Visualization version   GIF version

Theorem efaddlem 14823
Description: Lemma for efadd 14824 (exponential function addition law). (Contributed by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
efadd.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
efadd.2 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
efadd.3 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
efadd.4 (𝜑𝐴 ∈ ℂ)
efadd.5 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
efaddlem (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐹(𝑛)   𝐺(𝑛)   𝐻(𝑛)

Proof of Theorem efaddlem
Dummy variables 𝑗 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 efadd.4 . . . 4 (𝜑𝐴 ∈ ℂ)
2 efadd.5 . . . 4 (𝜑𝐵 ∈ ℂ)
31, 2addcld 10059 . . 3 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
4 efadd.3 . . . 4 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛)))
54efcvg 14815 . . 3 ((𝐴 + 𝐵) ∈ ℂ → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
63, 5syl 17 . 2 (𝜑 → seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)))
7 efadd.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 14807 . . . . 5 (𝑗 ∈ ℕ0 → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
98adantl 482 . . . 4 ((𝜑𝑗 ∈ ℕ0) → (𝐹𝑗) = ((𝐴𝑗) / (!‘𝑗)))
10 absexp 14044 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
111, 10sylan 488 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(𝐴𝑗)) = ((abs‘𝐴)↑𝑗))
12 faccl 13070 . . . . . . . 8 (𝑗 ∈ ℕ0 → (!‘𝑗) ∈ ℕ)
1312adantl 482 . . . . . . 7 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℕ)
14 nnre 11027 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℝ)
15 nnnn0 11299 . . . . . . . . 9 ((!‘𝑗) ∈ ℕ → (!‘𝑗) ∈ ℕ0)
1615nn0ge0d 11354 . . . . . . . 8 ((!‘𝑗) ∈ ℕ → 0 ≤ (!‘𝑗))
1714, 16absidd 14161 . . . . . . 7 ((!‘𝑗) ∈ ℕ → (abs‘(!‘𝑗)) = (!‘𝑗))
1813, 17syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (abs‘(!‘𝑗)) = (!‘𝑗))
1911, 18oveq12d 6668 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
20 expcl 12878 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
211, 20sylan 488 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (𝐴𝑗) ∈ ℂ)
2213nncnd 11036 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ∈ ℂ)
2313nnne0d 11065 . . . . . 6 ((𝜑𝑗 ∈ ℕ0) → (!‘𝑗) ≠ 0)
2421, 22, 23absdivd 14194 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → (abs‘((𝐴𝑗) / (!‘𝑗))) = ((abs‘(𝐴𝑗)) / (abs‘(!‘𝑗))))
25 eqid 2622 . . . . . . 7 (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))
2625eftval 14807 . . . . . 6 (𝑗 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2726adantl 482 . . . . 5 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (((abs‘𝐴)↑𝑗) / (!‘𝑗)))
2819, 24, 273eqtr4rd 2667 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))‘𝑗) = (abs‘((𝐴𝑗) / (!‘𝑗))))
29 eftcl 14804 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
301, 29sylan 488 . . . 4 ((𝜑𝑗 ∈ ℕ0) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
31 efadd.2 . . . . . 6 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵𝑛) / (!‘𝑛)))
3231eftval 14807 . . . . 5 (𝑘 ∈ ℕ0 → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
3332adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐺𝑘) = ((𝐵𝑘) / (!‘𝑘)))
34 eftcl 14804 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
352, 34sylan 488 . . . 4 ((𝜑𝑘 ∈ ℕ0) → ((𝐵𝑘) / (!‘𝑘)) ∈ ℂ)
364eftval 14807 . . . . . 6 (𝑘 ∈ ℕ0 → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
3736adantl 482 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)))
381adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ)
392adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝐵 ∈ ℂ)
40 simpr 477 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
41 binom 14562 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4238, 39, 40, 41syl3anc 1326 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑘) = Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
4342oveq1d 6665 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
44 fzfid 12772 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (0...𝑘) ∈ Fin)
45 faccl 13070 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
4645adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
4746nncnd 11036 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℂ)
48 bccl2 13110 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) ∈ ℕ)
4948adantl 482 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℕ)
5049nncnd 11036 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) ∈ ℂ)
511ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐴 ∈ ℂ)
52 fznn0sub 12373 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → (𝑘𝑗) ∈ ℕ0)
5352adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘𝑗) ∈ ℕ0)
5451, 53expcld 13008 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑(𝑘𝑗)) ∈ ℂ)
552ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝐵 ∈ ℂ)
56 elfznn0 12433 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑘) → 𝑗 ∈ ℕ0)
5756adantl 482 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℕ0)
5855, 57expcld 13008 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵𝑗) ∈ ℂ)
5954, 58mulcld 10060 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) ∈ ℂ)
6050, 59mulcld 10060 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) ∈ ℂ)
6146nnne0d 11065 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ≠ 0)
6244, 47, 60, 61fsumdivc 14518 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
6351, 57expcld 13008 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴𝑗) ∈ ℂ)
6457, 12syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℕ)
6564nncnd 11036 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ∈ ℂ)
6664nnne0d 11065 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑗) ≠ 0)
6763, 65, 66divcld 10801 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴𝑗) / (!‘𝑗)) ∈ ℂ)
6831eftval 14807 . . . . . . . . . . . 12 ((𝑘𝑗) ∈ ℕ0 → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
6953, 68syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) = ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
7055, 53expcld 13008 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐵↑(𝑘𝑗)) ∈ ℂ)
71 faccl 13070 . . . . . . . . . . . . . 14 ((𝑘𝑗) ∈ ℕ0 → (!‘(𝑘𝑗)) ∈ ℕ)
7253, 71syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℕ)
7372nncnd 11036 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ∈ ℂ)
7472nnne0d 11065 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘(𝑘𝑗)) ≠ 0)
7570, 73, 74divcld 10801 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐵↑(𝑘𝑗)) / (!‘(𝑘𝑗))) ∈ ℂ)
7669, 75eqeltrd 2701 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘𝑗)) ∈ ℂ)
7767, 76mulcld 10060 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) ∈ ℂ)
78 oveq2 6658 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐴𝑗) = (𝐴↑((0 + 𝑘) − 𝑚)))
79 fveq2 6191 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (!‘𝑗) = (!‘((0 + 𝑘) − 𝑚)))
8078, 79oveq12d 6668 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → ((𝐴𝑗) / (!‘𝑗)) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
81 oveq2 6658 . . . . . . . . . . 11 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝑘𝑗) = (𝑘 − ((0 + 𝑘) − 𝑚)))
8281fveq2d 6195 . . . . . . . . . 10 (𝑗 = ((0 + 𝑘) − 𝑚) → (𝐺‘(𝑘𝑗)) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
8380, 82oveq12d 6668 . . . . . . . . 9 (𝑗 = ((0 + 𝑘) − 𝑚) → (((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8477, 83fsumrev2 14514 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
8531eftval 14807 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8657, 85syl 17 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺𝑗) = ((𝐵𝑗) / (!‘𝑗)))
8786oveq2d 6666 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
8872, 64nnmulcld 11068 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℕ)
8988nncnd 11036 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ∈ ℂ)
9088nnne0d 11065 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘(𝑘𝑗)) · (!‘𝑗)) ≠ 0)
9159, 89, 90divrec2d 10805 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
9254, 73, 58, 65, 74, 66divmuldivd 10842 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))) = (((𝐴↑(𝑘𝑗)) · (𝐵𝑗)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
93 bcval2 13092 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑘) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9493adantl 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘C𝑗) = ((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9594oveq1d 6665 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)))
9647adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ∈ ℂ)
9761adantr 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘𝑘) ≠ 0)
9896, 89, 96, 90, 97divdiv32d 10826 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))))
9996, 97dividd 10799 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((!‘𝑘) / (!‘𝑘)) = 1)
10099oveq1d 6665 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / (!‘𝑘)) / ((!‘(𝑘𝑗)) · (!‘𝑗))) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10198, 100eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((!‘𝑘) / ((!‘(𝑘𝑗)) · (!‘𝑗))) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
10295, 101eqtrd 2656 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝑘C𝑗) / (!‘𝑘)) = (1 / ((!‘(𝑘𝑗)) · (!‘𝑗))))
103102oveq1d 6665 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = ((1 / ((!‘(𝑘𝑗)) · (!‘𝑗))) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
10491, 92, 1033eqtr4rd 2667 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · ((𝐵𝑗) / (!‘𝑗))))
10587, 104eqtr4d 2659 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
106 nn0cn 11302 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
107106ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑘 ∈ ℂ)
108107addid2d 10237 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (0 + 𝑘) = 𝑘)
109108oveq1d 6665 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((0 + 𝑘) − 𝑗) = (𝑘𝑗))
110109oveq2d 6666 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑(𝑘𝑗)))
111109fveq2d 6195 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (!‘((0 + 𝑘) − 𝑗)) = (!‘(𝑘𝑗)))
112110, 111oveq12d 6668 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))))
113109oveq2d 6666 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − (𝑘𝑗)))
114 nn0cn 11302 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ0𝑗 ∈ ℂ)
11557, 114syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → 𝑗 ∈ ℂ)
116107, 115nncand 10397 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − (𝑘𝑗)) = 𝑗)
117113, 116eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝑘 − ((0 + 𝑘) − 𝑗)) = 𝑗)
118117fveq2d 6195 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺𝑗))
119112, 118oveq12d 6668 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑(𝑘𝑗)) / (!‘(𝑘𝑗))) · (𝐺𝑗)))
12050, 59, 96, 97div23d 10838 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝑘C𝑗) / (!‘𝑘)) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))))
121105, 119, 1203eqtr4rd 2667 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑗 ∈ (0...𝑘)) → (((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
122121sumeq2dv 14433 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))))
123 oveq2 6658 . . . . . . . . . . . . 13 (𝑗 = 𝑚 → ((0 + 𝑘) − 𝑗) = ((0 + 𝑘) − 𝑚))
124123oveq2d 6666 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝐴↑((0 + 𝑘) − 𝑗)) = (𝐴↑((0 + 𝑘) − 𝑚)))
125123fveq2d 6195 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (!‘((0 + 𝑘) − 𝑗)) = (!‘((0 + 𝑘) − 𝑚)))
126124, 125oveq12d 6668 . . . . . . . . . . 11 (𝑗 = 𝑚 → ((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) = ((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))))
127123oveq2d 6666 . . . . . . . . . . . 12 (𝑗 = 𝑚 → (𝑘 − ((0 + 𝑘) − 𝑗)) = (𝑘 − ((0 + 𝑘) − 𝑚)))
128127fveq2d 6195 . . . . . . . . . . 11 (𝑗 = 𝑚 → (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗))) = (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
129126, 128oveq12d 6668 . . . . . . . . . 10 (𝑗 = 𝑚 → (((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = (((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
130129cbvsumv 14426 . . . . . . . . 9 Σ𝑗 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑗)) / (!‘((0 + 𝑘) − 𝑗))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑗)))) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚))))
131122, 130syl6eq 2672 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑚 ∈ (0...𝑘)(((𝐴↑((0 + 𝑘) − 𝑚)) / (!‘((0 + 𝑘) − 𝑚))) · (𝐺‘(𝑘 − ((0 + 𝑘) − 𝑚)))))
13284, 131eqtr4d 2659 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))) = Σ𝑗 ∈ (0...𝑘)(((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)))
13362, 132eqtr4d 2659 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (Σ𝑗 ∈ (0...𝑘)((𝑘C𝑗) · ((𝐴↑(𝑘𝑗)) · (𝐵𝑗))) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13443, 133eqtrd 2656 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (((𝐴 + 𝐵)↑𝑘) / (!‘𝑘)) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
13537, 134eqtrd 2656 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (𝐻𝑘) = Σ𝑗 ∈ (0...𝑘)(((𝐴𝑗) / (!‘𝑗)) · (𝐺‘(𝑘𝑗))))
1361abscld 14175 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ)
137136recnd 10068 . . . . 5 (𝜑 → (abs‘𝐴) ∈ ℂ)
13825efcllem 14808 . . . . 5 ((abs‘𝐴) ∈ ℂ → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
139137, 138syl 17 . . . 4 (𝜑 → seq0( + , (𝑛 ∈ ℕ0 ↦ (((abs‘𝐴)↑𝑛) / (!‘𝑛)))) ∈ dom ⇝ )
14031efcllem 14808 . . . . 5 (𝐵 ∈ ℂ → seq0( + , 𝐺) ∈ dom ⇝ )
1412, 140syl 17 . . . 4 (𝜑 → seq0( + , 𝐺) ∈ dom ⇝ )
1429, 28, 30, 33, 35, 135, 139, 141mertens 14618 . . 3 (𝜑 → seq0( + , 𝐻) ⇝ (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
143 efval 14810 . . . . 5 (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
1441, 143syl 17 . . . 4 (𝜑 → (exp‘𝐴) = Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)))
145 efval 14810 . . . . 5 (𝐵 ∈ ℂ → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
1462, 145syl 17 . . . 4 (𝜑 → (exp‘𝐵) = Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘)))
147144, 146oveq12d 6668 . . 3 (𝜑 → ((exp‘𝐴) · (exp‘𝐵)) = (Σ𝑗 ∈ ℕ0 ((𝐴𝑗) / (!‘𝑗)) · Σ𝑘 ∈ ℕ0 ((𝐵𝑘) / (!‘𝑘))))
148142, 147breqtrrd 4681 . 2 (𝜑 → seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵)))
149 climuni 14283 . 2 ((seq0( + , 𝐻) ⇝ (exp‘(𝐴 + 𝐵)) ∧ seq0( + , 𝐻) ⇝ ((exp‘𝐴) · (exp‘𝐵))) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
1506, 148, 149syl2anc 693 1 (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  ...cfz 12326  seqcseq 12801  cexp 12860  !cfa 13060  Ccbc 13089  abscabs 13974  cli 14215  Σcsu 14416  expce 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798
This theorem is referenced by:  efadd  14824
  Copyright terms: Public domain W3C validator