![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2halvesd | Structured version Visualization version GIF version |
Description: Two halves make a whole. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
2timesd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
2halvesd | ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2timesd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 2halves 11260 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ((𝐴 / 2) + (𝐴 / 2)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 (class class class)co 6650 ℂcc 9934 + caddc 9939 / cdiv 10684 2c2 11070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 |
This theorem is referenced by: reccn2 14327 mertenslem1 14616 sin01bnd 14915 prmreclem5 15624 4sqlem6 15647 4sqlem10 15651 4sqlem15 15663 4sqlem16 15664 blhalf 22210 methaus 22325 nrginvrcnlem 22495 opnreen 22634 iscau3 23076 ovollb2lem 23256 ovolunlem1a 23264 itg2cnlem2 23529 ulmcn 24153 ulmdvlem1 24154 cxpcn3lem 24488 chordthmlem4 24562 lgamgulmlem3 24757 ftalem2 24800 chtub 24937 lgsqrlem2 25072 lgseisenlem2 25101 lgsquadlem1 25105 2sqlem8 25151 mulog2sumlem1 25223 vmalogdivsum 25228 pntibndlem2 25280 lt2addrd 29516 le2halvesd 29520 dnizphlfeqhlf 32466 poimirlem29 33438 heicant 33444 mblfinlem4 33449 itg2addnclem 33461 ftc1anclem6 33490 ftc1anclem8 33492 heibor1lem 33608 suplesup 39555 lptre2pt 39872 0ellimcdiv 39881 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 dirkertrigeqlem2 40316 dirkercncflem1 40320 sge0xaddlem1 40650 hoiqssbllem2 40837 |
Copyright terms: Public domain | W3C validator |