| Step | Hyp | Ref
| Expression |
| 1 | | n0i 3920 |
. . . . . 6
⊢ (𝐹 ∈ ran 𝑆 → ¬ ran 𝑆 = ∅) |
| 2 | | mrsubccat.s |
. . . . . . . . 9
⊢ 𝑆 = (mRSubst‘𝑇) |
| 3 | | fvprc 6185 |
. . . . . . . . 9
⊢ (¬
𝑇 ∈ V →
(mRSubst‘𝑇) =
∅) |
| 4 | 2, 3 | syl5eq 2668 |
. . . . . . . 8
⊢ (¬
𝑇 ∈ V → 𝑆 = ∅) |
| 5 | 4 | rneqd 5353 |
. . . . . . 7
⊢ (¬
𝑇 ∈ V → ran 𝑆 = ran ∅) |
| 6 | | rn0 5377 |
. . . . . . 7
⊢ ran
∅ = ∅ |
| 7 | 5, 6 | syl6eq 2672 |
. . . . . 6
⊢ (¬
𝑇 ∈ V → ran 𝑆 = ∅) |
| 8 | 1, 7 | nsyl2 142 |
. . . . 5
⊢ (𝐹 ∈ ran 𝑆 → 𝑇 ∈ V) |
| 9 | | eqid 2622 |
. . . . . 6
⊢
(mVR‘𝑇) =
(mVR‘𝑇) |
| 10 | | mrsubccat.r |
. . . . . 6
⊢ 𝑅 = (mREx‘𝑇) |
| 11 | 9, 10, 2 | mrsubff 31409 |
. . . . 5
⊢ (𝑇 ∈ V → 𝑆:(𝑅 ↑pm (mVR‘𝑇))⟶(𝑅 ↑𝑚 𝑅)) |
| 12 | | ffun 6048 |
. . . . 5
⊢ (𝑆:(𝑅 ↑pm (mVR‘𝑇))⟶(𝑅 ↑𝑚 𝑅) → Fun 𝑆) |
| 13 | 8, 11, 12 | 3syl 18 |
. . . 4
⊢ (𝐹 ∈ ran 𝑆 → Fun 𝑆) |
| 14 | 9, 10, 2 | mrsubrn 31410 |
. . . . . 6
⊢ ran 𝑆 = (𝑆 “ (𝑅 ↑𝑚 (mVR‘𝑇))) |
| 15 | 14 | eleq2i 2693 |
. . . . 5
⊢ (𝐹 ∈ ran 𝑆 ↔ 𝐹 ∈ (𝑆 “ (𝑅 ↑𝑚 (mVR‘𝑇)))) |
| 16 | 15 | biimpi 206 |
. . . 4
⊢ (𝐹 ∈ ran 𝑆 → 𝐹 ∈ (𝑆 “ (𝑅 ↑𝑚 (mVR‘𝑇)))) |
| 17 | | fvelima 6248 |
. . . 4
⊢ ((Fun
𝑆 ∧ 𝐹 ∈ (𝑆 “ (𝑅 ↑𝑚 (mVR‘𝑇)))) → ∃𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
| 18 | 13, 16, 17 | syl2anc 693 |
. . 3
⊢ (𝐹 ∈ ran 𝑆 → ∃𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇))(𝑆‘𝑓) = 𝐹) |
| 19 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑋 ∈ 𝑅) |
| 20 | | elfvex 6221 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ (mREx‘𝑇) → 𝑇 ∈ V) |
| 21 | 20, 10 | eleq2s 2719 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ 𝑅 → 𝑇 ∈ V) |
| 22 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(mCN‘𝑇) =
(mCN‘𝑇) |
| 23 | 22, 9, 10 | mrexval 31398 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ V → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 24 | 19, 21, 23 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 25 | 19, 24 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 26 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑌 ∈ 𝑅) |
| 27 | 26, 24 | eleqtrd 2703 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 28 | | elmapi 7879 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) → 𝑓:(mVR‘𝑇)⟶𝑅) |
| 29 | 28 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → 𝑓:(mVR‘𝑇)⟶𝑅) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → 𝑓:(mVR‘𝑇)⟶𝑅) |
| 31 | 30 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓‘𝑣) ∈ 𝑅) |
| 32 | 24 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → 𝑅 = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 33 | 31, 32 | eleqtrd 2703 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ 𝑣 ∈ (mVR‘𝑇)) → (𝑓‘𝑣) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 34 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ ((((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 35 | 34 | s1cld 13383 |
. . . . . . . . . . . . 13
⊢ ((((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) ∧ ¬ 𝑣 ∈ (mVR‘𝑇)) → 〈“𝑣”〉 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 36 | 33, 35 | ifclda 4120 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) ∧ 𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇))) → if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 37 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) = (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) |
| 38 | 36, 37 | fmptd 6385 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 39 | | ccatco 13581 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) |
| 40 | 25, 27, 38, 39 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌)) = (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) |
| 41 | 40 | oveq2d 6666 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌))) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
(((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 42 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(mCN‘𝑇) ∈
V |
| 43 | | fvex 6201 |
. . . . . . . . . . . 12
⊢
(mVR‘𝑇) ∈
V |
| 44 | 42, 43 | unex 6956 |
. . . . . . . . . . 11
⊢
((mCN‘𝑇) ∪
(mVR‘𝑇)) ∈
V |
| 45 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) = (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 46 | 45 | frmdmnd 17396 |
. . . . . . . . . . 11
⊢
(((mCN‘𝑇)
∪ (mVR‘𝑇)) ∈
V → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd) |
| 47 | 44, 46 | mp1i 13 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd) |
| 48 | | wrdco 13577 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 49 | 25, 38, 48 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 50 | | wrdco 13577 |
. . . . . . . . . . 11
⊢ ((𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ (𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)):((mCN‘𝑇) ∪ (mVR‘𝑇))⟶Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 51 | 27, 38, 50 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) =
(Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
| 53 | 45, 52 | frmdbas 17389 |
. . . . . . . . . . . . 13
⊢
(((mCN‘𝑇)
∪ (mVR‘𝑇)) ∈
V → (Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 54 | 44, 53 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) = Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) |
| 55 | 54 | eqcomi 2631 |
. . . . . . . . . . 11
⊢ Word
((mCN‘𝑇) ∪
(mVR‘𝑇)) =
(Base‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
| 56 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) =
(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇)))) |
| 57 | 55, 56 | gsumccat 17378 |
. . . . . . . . . 10
⊢
(((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) →
((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg (((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 58 | 47, 49, 51, 57 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
(((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ++ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 59 | 55 | gsumwcl 17377 |
. . . . . . . . . . 11
⊢
(((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) →
((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 60 | 47, 49, 59 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 61 | 55 | gsumwcl 17377 |
. . . . . . . . . . 11
⊢
(((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) ∈ Mnd ∧ ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌) ∈ Word Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) →
((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 62 | 47, 51, 61 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 63 | 45, 55, 56 | frmdadd 17392 |
. . . . . . . . . 10
⊢
((((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) →
(((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 64 | 60, 62, 63 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))(+g‘(freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))))((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg ((𝑣 ∈ ((mCN‘𝑇) ∪ (mVR‘𝑇)) ↦ if(𝑣 ∈ (mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 65 | 41, 58, 64 | 3eqtrd 2660 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌))) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 66 | | ssid 3624 |
. . . . . . . . . 10
⊢
(mVR‘𝑇)
⊆ (mVR‘𝑇) |
| 67 | 66 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (mVR‘𝑇) ⊆ (mVR‘𝑇)) |
| 68 | | ccatcl 13359 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇)) ∧ 𝑌 ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 69 | 25, 27, 68 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (𝑋 ++ 𝑌) ∈ Word ((mCN‘𝑇) ∪ (mVR‘𝑇))) |
| 70 | 69, 24 | eleqtrrd 2704 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (𝑋 ++ 𝑌) ∈ 𝑅) |
| 71 | 22, 9, 10, 2, 45 | mrsubval 31406 |
. . . . . . . . 9
⊢ ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ (𝑋 ++ 𝑌) ∈ 𝑅) → ((𝑆‘𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌)))) |
| 72 | 29, 67, 70, 71 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑆‘𝑓)‘(𝑋 ++ 𝑌)) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ (𝑋 ++ 𝑌)))) |
| 73 | 22, 9, 10, 2, 45 | mrsubval 31406 |
. . . . . . . . . 10
⊢ ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| 74 | 29, 67, 19, 73 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑆‘𝑓)‘𝑋) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| 75 | 22, 9, 10, 2, 45 | mrsubval 31406 |
. . . . . . . . . 10
⊢ ((𝑓:(mVR‘𝑇)⟶𝑅 ∧ (mVR‘𝑇) ⊆ (mVR‘𝑇) ∧ 𝑌 ∈ 𝑅) → ((𝑆‘𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) |
| 76 | 29, 67, 26, 75 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑆‘𝑓)‘𝑌) = ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌))) |
| 77 | 74, 76 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → (((𝑆‘𝑓)‘𝑋) ++ ((𝑆‘𝑓)‘𝑌)) = (((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ++ ((freeMnd‘((mCN‘𝑇) ∪ (mVR‘𝑇))) Σg
((𝑣 ∈
((mCN‘𝑇) ∪
(mVR‘𝑇)) ↦
if(𝑣 ∈
(mVR‘𝑇), (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑌)))) |
| 78 | 65, 72, 77 | 3eqtr4d 2666 |
. . . . . . 7
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑆‘𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆‘𝑓)‘𝑋) ++ ((𝑆‘𝑓)‘𝑌))) |
| 79 | | fveq1 6190 |
. . . . . . . 8
⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘(𝑋 ++ 𝑌)) = (𝐹‘(𝑋 ++ 𝑌))) |
| 80 | | fveq1 6190 |
. . . . . . . . 9
⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘𝑋) = (𝐹‘𝑋)) |
| 81 | | fveq1 6190 |
. . . . . . . . 9
⊢ ((𝑆‘𝑓) = 𝐹 → ((𝑆‘𝑓)‘𝑌) = (𝐹‘𝑌)) |
| 82 | 80, 81 | oveq12d 6668 |
. . . . . . . 8
⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘𝑋) ++ ((𝑆‘𝑓)‘𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) |
| 83 | 79, 82 | eqeq12d 2637 |
. . . . . . 7
⊢ ((𝑆‘𝑓) = 𝐹 → (((𝑆‘𝑓)‘(𝑋 ++ 𝑌)) = (((𝑆‘𝑓)‘𝑋) ++ ((𝑆‘𝑓)‘𝑌)) ↔ (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌)))) |
| 84 | 78, 83 | syl5ibcom 235 |
. . . . . 6
⊢ ((𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) ∧ (𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅)) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌)))) |
| 85 | 84 | ex 450 |
. . . . 5
⊢ (𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → ((𝑆‘𝑓) = 𝐹 → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))))) |
| 86 | 85 | com23 86 |
. . . 4
⊢ (𝑓 ∈ (𝑅 ↑𝑚 (mVR‘𝑇)) → ((𝑆‘𝑓) = 𝐹 → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))))) |
| 87 | 86 | rexlimiv 3027 |
. . 3
⊢
(∃𝑓 ∈
(𝑅
↑𝑚 (mVR‘𝑇))(𝑆‘𝑓) = 𝐹 → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌)))) |
| 88 | 18, 87 | syl 17 |
. 2
⊢ (𝐹 ∈ ran 𝑆 → ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌)))) |
| 89 | 88 | 3impib 1262 |
1
⊢ ((𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑅) → (𝐹‘(𝑋 ++ 𝑌)) = ((𝐹‘𝑋) ++ (𝐹‘𝑌))) |