| Step | Hyp | Ref
| Expression |
| 1 | | lnrring 37682 |
. . 3
⊢ (𝑅 ∈ LNoeR → 𝑅 ∈ Ring) |
| 2 | | hbt.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 3 | 2 | ply1ring 19618 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 4 | 1, 3 | syl 17 |
. 2
⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ Ring) |
| 5 | | eqid 2622 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 6 | | eqid 2622 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 7 | 5, 6 | islnr3 37685 |
. . . . . . 7
⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧
(LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅)))) |
| 8 | 7 | simprbi 480 |
. . . . . 6
⊢ (𝑅 ∈ LNoeR →
(LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅))) |
| 9 | 8 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → (LIdeal‘𝑅) ∈
(NoeACS‘(Base‘𝑅))) |
| 10 | | eqid 2622 |
. . . . . . 7
⊢
(LIdeal‘𝑃) =
(LIdeal‘𝑃) |
| 11 | | eqid 2622 |
. . . . . . 7
⊢
(ldgIdlSeq‘𝑅)
= (ldgIdlSeq‘𝑅) |
| 12 | 2, 10, 11, 6 | hbtlem7 37695 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃)) →
((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅)) |
| 13 | 1, 12 | sylan 488 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) →
((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅)) |
| 14 | 1 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 15 | | simplr 792 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑎 ∈ (LIdeal‘𝑃)) |
| 16 | | simpr 477 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ∈
ℕ0) |
| 17 | | peano2nn0 11333 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ (𝑏 + 1) ∈
ℕ0) |
| 18 | 17 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → (𝑏 + 1) ∈
ℕ0) |
| 19 | | nn0re 11301 |
. . . . . . . . 9
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ∈
ℝ) |
| 20 | 19 | lep1d 10955 |
. . . . . . . 8
⊢ (𝑏 ∈ ℕ0
→ 𝑏 ≤ (𝑏 + 1)) |
| 21 | 20 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) → 𝑏 ≤ (𝑏 + 1)) |
| 22 | 2, 10, 11, 14, 15, 16, 18, 21 | hbtlem4 37696 |
. . . . . 6
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑏 ∈ ℕ0) →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) |
| 23 | 22 | ralrimiva 2966 |
. . . . 5
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑏 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) |
| 24 | | nacsfix 37275 |
. . . . 5
⊢
(((LIdeal‘𝑅)
∈ (NoeACS‘(Base‘𝑅)) ∧ ((ldgIdlSeq‘𝑅)‘𝑎):ℕ0⟶(LIdeal‘𝑅) ∧ ∀𝑏 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑏) ⊆ (((ldgIdlSeq‘𝑅)‘𝑎)‘(𝑏 + 1))) → ∃𝑐 ∈ ℕ0 ∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 25 | 9, 13, 23, 24 | syl3anc 1326 |
. . . 4
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑐 ∈ ℕ0
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 26 | | fzfi 12771 |
. . . . . . 7
⊢
(0...𝑐) ∈
Fin |
| 27 | | eqid 2622 |
. . . . . . . . 9
⊢
(RSpan‘𝑃) =
(RSpan‘𝑃) |
| 28 | | simpll 790 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑅 ∈ LNoeR) |
| 29 | | simplr 792 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑎 ∈ (LIdeal‘𝑃)) |
| 30 | | elfznn0 12433 |
. . . . . . . . . 10
⊢ (𝑒 ∈ (0...𝑐) → 𝑒 ∈ ℕ0) |
| 31 | 30 | adantl 482 |
. . . . . . . . 9
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → 𝑒 ∈ ℕ0) |
| 32 | 2, 10, 11, 27, 28, 29, 31 | hbtlem6 37699 |
. . . . . . . 8
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ 𝑒 ∈ (0...𝑐)) → ∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) |
| 33 | 32 | ralrimiva 2966 |
. . . . . . 7
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∀𝑒 ∈ (0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩ Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) |
| 34 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑏 = (𝑓‘𝑒) → ((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘(𝑓‘𝑒))) |
| 35 | 34 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑏 = (𝑓‘𝑒) → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏)) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))) |
| 36 | 35 | fveq1d 6193 |
. . . . . . . . 9
⊢ (𝑏 = (𝑓‘𝑒) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) |
| 37 | 36 | sseq2d 3633 |
. . . . . . . 8
⊢ (𝑏 = (𝑓‘𝑒) → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
| 38 | 37 | ac6sfi 8204 |
. . . . . . 7
⊢
(((0...𝑐) ∈ Fin
∧ ∀𝑒 ∈
(0...𝑐)∃𝑏 ∈ (𝒫 𝑎 ∩
Fin)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘𝑏))‘𝑒)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
| 39 | 26, 33, 38 | sylancr 695 |
. . . . . 6
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
| 40 | 39 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑓(𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) |
| 41 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin)) |
| 42 | 41 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ran 𝑓 ⊆ (𝒫 𝑎 ∩ Fin)) |
| 43 | | inss1 3833 |
. . . . . . . . . . . 12
⊢
(𝒫 𝑎 ∩
Fin) ⊆ 𝒫 𝑎 |
| 44 | 42, 43 | syl6ss 3615 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ran 𝑓 ⊆ 𝒫 𝑎) |
| 45 | 44 | unissd 4462 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ ∪ 𝒫 𝑎) |
| 46 | | unipw 4918 |
. . . . . . . . . 10
⊢ ∪ 𝒫 𝑎 = 𝑎 |
| 47 | 45, 46 | syl6sseq 3651 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ 𝑎) |
| 48 | | simpllr 799 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 ∈ (LIdeal‘𝑃)) |
| 49 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 50 | 49, 10 | lidlss 19210 |
. . . . . . . . . 10
⊢ (𝑎 ∈ (LIdeal‘𝑃) → 𝑎 ⊆ (Base‘𝑃)) |
| 51 | 48, 50 | syl 17 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 ⊆ (Base‘𝑃)) |
| 52 | 47, 51 | sstrd 3613 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆ (Base‘𝑃)) |
| 53 | | fvex 6201 |
. . . . . . . . 9
⊢
(Base‘𝑃)
∈ V |
| 54 | 53 | elpw2 4828 |
. . . . . . . 8
⊢ (∪ ran 𝑓 ∈ 𝒫 (Base‘𝑃) ↔ ∪ ran 𝑓 ⊆ (Base‘𝑃)) |
| 55 | 52, 54 | sylibr 224 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈ 𝒫
(Base‘𝑃)) |
| 56 | | simprl 794 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin)) |
| 57 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) → 𝑓 Fn (0...𝑐)) |
| 58 | | fniunfv 6505 |
. . . . . . . . 9
⊢ (𝑓 Fn (0...𝑐) → ∪
𝑔 ∈ (0...𝑐)(𝑓‘𝑔) = ∪ ran 𝑓) |
| 59 | 56, 57, 58 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) = ∪ ran 𝑓) |
| 60 | | inss2 3834 |
. . . . . . . . . . 11
⊢
(𝒫 𝑎 ∩
Fin) ⊆ Fin |
| 61 | 56 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓‘𝑔) ∈ (𝒫 𝑎 ∩ Fin)) |
| 62 | 60, 61 | sseldi 3601 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ (0...𝑐)) → (𝑓‘𝑔) ∈ Fin) |
| 63 | 62 | ralrimiva 2966 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
| 64 | | iunfi 8254 |
. . . . . . . . 9
⊢
(((0...𝑐) ∈ Fin
∧ ∀𝑔 ∈
(0...𝑐)(𝑓‘𝑔) ∈ Fin) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
| 65 | 26, 63, 64 | sylancr 695 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ 𝑔 ∈ (0...𝑐)(𝑓‘𝑔) ∈ Fin) |
| 66 | 59, 65 | eqeltrrd 2702 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈
Fin) |
| 67 | 55, 66 | elind 3798 |
. . . . . 6
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ∈ (𝒫
(Base‘𝑃) ∩
Fin)) |
| 68 | 1 | ad3antrrr 766 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑅 ∈ Ring) |
| 69 | 4 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑃 ∈ Ring) |
| 70 | 27, 49, 10 | rspcl 19222 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
| 71 | 69, 52, 70 | syl2anc 693 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
| 72 | 27, 10 | rspssp 19226 |
. . . . . . . . 9
⊢ ((𝑃 ∈ Ring ∧ 𝑎 ∈ (LIdeal‘𝑃) ∧ ∪ ran 𝑓 ⊆ 𝑎) → ((RSpan‘𝑃)‘∪ ran
𝑓) ⊆ 𝑎) |
| 73 | 69, 48, 47, 72 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) ⊆ 𝑎) |
| 74 | | nn0re 11301 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ ℕ0
→ 𝑔 ∈
ℝ) |
| 75 | 74 | adantl 482 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑔 ∈
ℝ) |
| 76 | | simplrl 800 |
. . . . . . . . . . . 12
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ∈ ℕ0) |
| 77 | 76 | adantr 481 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈
ℕ0) |
| 78 | 77 | nn0red 11352 |
. . . . . . . . . 10
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → 𝑐 ∈
ℝ) |
| 79 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ∈ ℕ0) |
| 80 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ≤ 𝑐) |
| 81 | 76 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑐 ∈ ℕ0) |
| 82 | | fznn0 12432 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ ℕ0
→ (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐))) |
| 83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (𝑔 ∈ (0...𝑐) ↔ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐))) |
| 84 | 79, 80, 83 | mpbir2and 957 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑔 ∈ (0...𝑐)) |
| 85 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) |
| 86 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔)) |
| 87 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑒 = 𝑔 → (𝑓‘𝑒) = (𝑓‘𝑔)) |
| 88 | 87 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑒 = 𝑔 → ((RSpan‘𝑃)‘(𝑓‘𝑒)) = ((RSpan‘𝑃)‘(𝑓‘𝑔))) |
| 89 | 88 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑔 → ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒))) = ((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))) |
| 90 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑔 → 𝑒 = 𝑔) |
| 91 | 89, 90 | fveq12d 6197 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = 𝑔 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
| 92 | 86, 91 | sseq12d 3634 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔))) |
| 93 | 92 | rspcva 3307 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈ (0...𝑐) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
| 94 | 84, 85, 93 | syl2anc 693 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔)) |
| 95 | 68 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑅 ∈ Ring) |
| 96 | | fvssunirn 6217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓‘𝑔) ⊆ ∪ ran
𝑓 |
| 97 | 96, 52 | syl5ss 3614 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (𝑓‘𝑔) ⊆ (Base‘𝑃)) |
| 98 | 27, 49, 10 | rspcl 19222 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ∈ Ring ∧ (𝑓‘𝑔) ⊆ (Base‘𝑃)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
| 99 | 69, 97, 98 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
| 100 | 99 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ∈ (LIdeal‘𝑃)) |
| 101 | 71 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
| 102 | 68, 3 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑃 ∈ Ring) |
| 103 | 102 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → 𝑃 ∈ Ring) |
| 104 | 27, 49 | rspssid 19223 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ Ring ∧ ∪ ran 𝑓 ⊆ (Base‘𝑃)) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 105 | 69, 52, 104 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 106 | 105 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ∪ ran
𝑓 ⊆
((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 107 | 96, 106 | syl5ss 3614 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (𝑓‘𝑔) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 108 | 27, 10 | rspssp 19226 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ Ring ∧
((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃) ∧
(𝑓‘𝑔) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) →
((RSpan‘𝑃)‘(𝑓‘𝑔)) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 109 | 103, 101,
107, 108 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → ((RSpan‘𝑃)‘(𝑓‘𝑔)) ⊆ ((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 110 | 2, 10, 11, 95, 100, 101, 109, 79 | hbtlem3 37697 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑔)))‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 111 | 94, 110 | sstrd 3613 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑔 ≤ 𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 112 | 111 | anassrs 680 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑔 ≤ 𝑐) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 113 | | nn0z 11400 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ℕ0
→ 𝑐 ∈
ℤ) |
| 114 | 113 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑐 ∈
ℤ) |
| 115 | | nn0z 11400 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ ℕ0
→ 𝑔 ∈
ℤ) |
| 116 | 115 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑔 ∈
ℤ) |
| 117 | | simprr 796 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑐 ≤ 𝑔) |
| 118 | | eluz2 11693 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈
(ℤ≥‘𝑐) ↔ (𝑐 ∈ ℤ ∧ 𝑔 ∈ ℤ ∧ 𝑐 ≤ 𝑔)) |
| 119 | 114, 116,
117, 118 | syl3anbrc 1246 |
. . . . . . . . . . . . . 14
⊢ ((𝑐 ∈ ℕ0
∧ (𝑔 ∈
ℕ0 ∧ 𝑐
≤ 𝑔)) → 𝑔 ∈
(ℤ≥‘𝑐)) |
| 120 | 76, 119 | sylan 488 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑔 ∈ (ℤ≥‘𝑐)) |
| 121 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 122 | 121 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 123 | | fveq2 6191 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 = 𝑔 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔)) |
| 124 | 123 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = 𝑔 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) |
| 125 | 124 | rspcva 3307 |
. . . . . . . . . . . . 13
⊢ ((𝑔 ∈
(ℤ≥‘𝑐) ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 126 | 120, 122,
125 | syl2anc 693 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 127 | 76 | nn0red 11352 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ∈ ℝ) |
| 128 | 127 | leidd 10594 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑐 ≤ 𝑐) |
| 129 | 111 | expr 643 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) → (𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) |
| 130 | 129 | ralrimiva 2966 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0 (𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) |
| 131 | | breq1 4656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑐 → (𝑔 ≤ 𝑐 ↔ 𝑐 ≤ 𝑐)) |
| 132 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐)) |
| 133 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 = 𝑐 → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran
𝑓))‘𝑔) = (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
| 134 | 132, 133 | sseq12d 3634 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = 𝑐 → ((((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔) ↔ (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
| 135 | 131, 134 | imbi12d 334 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑐 → ((𝑔 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) ↔ (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)))) |
| 136 | 135 | rspcva 3307 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐 ∈ ℕ0
∧ ∀𝑔 ∈
ℕ0 (𝑔 ≤
𝑐 →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔))) → (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
| 137 | 76, 130, 136 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (𝑐 ≤ 𝑐 → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐))) |
| 138 | 128, 137 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
| 139 | 138 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐)) |
| 140 | 68 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑅 ∈ Ring) |
| 141 | 71 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → ((RSpan‘𝑃)‘∪ ran
𝑓) ∈
(LIdeal‘𝑃)) |
| 142 | 76 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑐 ∈ ℕ0) |
| 143 | | simprl 794 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑔 ∈ ℕ0) |
| 144 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → 𝑐 ≤ 𝑔) |
| 145 | 2, 10, 11, 140, 141, 142, 143, 144 | hbtlem4 37696 |
. . . . . . . . . . . . 13
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 146 | 139, 145 | sstrd 3613 |
. . . . . . . . . . . 12
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 147 | 126, 146 | eqsstrd 3639 |
. . . . . . . . . . 11
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ (𝑔 ∈ ℕ0 ∧ 𝑐 ≤ 𝑔)) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 148 | 147 | anassrs 680 |
. . . . . . . . . 10
⊢
((((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) ∧ 𝑐 ≤ 𝑔) → (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 149 | 75, 78, 112, 148 | lecasei 10143 |
. . . . . . . . 9
⊢
(((((𝑅 ∈ LNoeR
∧ 𝑎 ∈
(LIdeal‘𝑃)) ∧
(𝑐 ∈
ℕ0 ∧ ∀𝑑 ∈ (ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) ∧ 𝑔 ∈ ℕ0) →
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 150 | 149 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∀𝑔 ∈ ℕ0
(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑔) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘∪ ran 𝑓))‘𝑔)) |
| 151 | 2, 10, 11, 68, 71, 48, 73, 150 | hbtlem5 37698 |
. . . . . . 7
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ((RSpan‘𝑃)‘∪ ran
𝑓) = 𝑎) |
| 152 | 151 | eqcomd 2628 |
. . . . . 6
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → 𝑎 = ((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 153 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑏 = ∪
ran 𝑓 →
((RSpan‘𝑃)‘𝑏) = ((RSpan‘𝑃)‘∪ ran
𝑓)) |
| 154 | 153 | eqeq2d 2632 |
. . . . . . 7
⊢ (𝑏 = ∪
ran 𝑓 → (𝑎 = ((RSpan‘𝑃)‘𝑏) ↔ 𝑎 = ((RSpan‘𝑃)‘∪ ran
𝑓))) |
| 155 | 154 | rspcev 3309 |
. . . . . 6
⊢ ((∪ ran 𝑓 ∈ (𝒫 (Base‘𝑃) ∩ Fin) ∧ 𝑎 = ((RSpan‘𝑃)‘∪ ran 𝑓)) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
| 156 | 67, 152, 155 | syl2anc 693 |
. . . . 5
⊢ ((((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) ∧ (𝑓:(0...𝑐)⟶(𝒫 𝑎 ∩ Fin) ∧ ∀𝑒 ∈ (0...𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑒) ⊆ (((ldgIdlSeq‘𝑅)‘((RSpan‘𝑃)‘(𝑓‘𝑒)))‘𝑒))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
| 157 | 40, 156 | exlimddv 1863 |
. . . 4
⊢ (((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) ∧ (𝑐 ∈ ℕ0 ∧
∀𝑑 ∈
(ℤ≥‘𝑐)(((ldgIdlSeq‘𝑅)‘𝑎)‘𝑑) = (((ldgIdlSeq‘𝑅)‘𝑎)‘𝑐))) → ∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
| 158 | 25, 157 | rexlimddv 3035 |
. . 3
⊢ ((𝑅 ∈ LNoeR ∧ 𝑎 ∈ (LIdeal‘𝑃)) → ∃𝑏 ∈ (𝒫
(Base‘𝑃) ∩
Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
| 159 | 158 | ralrimiva 2966 |
. 2
⊢ (𝑅 ∈ LNoeR →
∀𝑎 ∈
(LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏)) |
| 160 | 49, 10, 27 | islnr2 37684 |
. 2
⊢ (𝑃 ∈ LNoeR ↔ (𝑃 ∈ Ring ∧ ∀𝑎 ∈ (LIdeal‘𝑃)∃𝑏 ∈ (𝒫 (Base‘𝑃) ∩ Fin)𝑎 = ((RSpan‘𝑃)‘𝑏))) |
| 161 | 4, 159, 160 | sylanbrc 698 |
1
⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) |