Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  orvclteel Structured version   Visualization version   GIF version

Theorem orvclteel 30534
Description: Preimage maps produced by the "lower than or equal" relation are measurable sets. (Contributed by Thierry Arnoux, 4-Feb-2017.)
Hypotheses
Ref Expression
dstfrv.1 (𝜑𝑃 ∈ Prob)
dstfrv.2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
orvclteel.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
orvclteel (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)

Proof of Theorem orvclteel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dstfrv.1 . 2 (𝜑𝑃 ∈ Prob)
2 dstfrv.2 . 2 (𝜑𝑋 ∈ (rRndVar‘𝑃))
3 orvclteel.1 . 2 (𝜑𝐴 ∈ ℝ)
4 rexr 10085 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
54ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥 ∈ ℝ*)
6 mnflt 11957 . . . . . . . . 9 (𝑥 ∈ ℝ → -∞ < 𝑥)
76ad2antrl 764 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → -∞ < 𝑥)
8 simprr 796 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → 𝑥𝐴)
97, 8jca 554 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (-∞ < 𝑥𝑥𝐴))
105, 9jca 554 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ 𝑥𝐴)) → (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴)))
11 simprl 794 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ*)
123adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝐴 ∈ ℝ)
13 simprrl 804 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → -∞ < 𝑥)
14 simprrr 805 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥𝐴)
15 xrre 12000 . . . . . . . 8 (((𝑥 ∈ ℝ*𝐴 ∈ ℝ) ∧ (-∞ < 𝑥𝑥𝐴)) → 𝑥 ∈ ℝ)
1611, 12, 13, 14, 15syl22anc 1327 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → 𝑥 ∈ ℝ)
1716, 14jca 554 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))) → (𝑥 ∈ ℝ ∧ 𝑥𝐴))
1810, 17impbida 877 . . . . 5 (𝜑 → ((𝑥 ∈ ℝ ∧ 𝑥𝐴) ↔ (𝑥 ∈ ℝ* ∧ (-∞ < 𝑥𝑥𝐴))))
1918rabbidva2 3186 . . . 4 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
20 mnfxr 10096 . . . . 5 -∞ ∈ ℝ*
213rexrd 10089 . . . . 5 (𝜑𝐴 ∈ ℝ*)
22 iocval 12212 . . . . 5 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2320, 21, 22sylancr 695 . . . 4 (𝜑 → (-∞(,]𝐴) = {𝑥 ∈ ℝ* ∣ (-∞ < 𝑥𝑥𝐴)})
2419, 23eqtr4d 2659 . . 3 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} = (-∞(,]𝐴))
25 iocmnfcld 22572 . . . 4 (𝐴 ∈ ℝ → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
263, 25syl 17 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (Clsd‘(topGen‘ran (,))))
2724, 26eqeltrd 2701 . 2 (𝜑 → {𝑥 ∈ ℝ ∣ 𝑥𝐴} ∈ (Clsd‘(topGen‘ran (,))))
281, 2, 3, 27orrvccel 30528 1 (𝜑 → (𝑋RV/𝑐𝐴) ∈ dom 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {crab 2916   class class class wbr 4653  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  cr 9935  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175  (,]cioc 12176  topGenctg 16098  Clsdccld 20820  Probcprb 30469  rRndVarcrrv 30502  RV/𝑐corvc 30517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-ioo 12179  df-ioc 12180  df-topgen 16104  df-top 20699  df-bases 20750  df-cld 20823  df-esum 30090  df-siga 30171  df-sigagen 30202  df-brsiga 30245  df-meas 30259  df-mbfm 30313  df-prob 30470  df-rrv 30503  df-orvc 30518
This theorem is referenced by:  dstfrvunirn  30536  dstfrvinc  30538  dstfrvclim1  30539
  Copyright terms: Public domain W3C validator