MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovoliunlem3 Structured version   Visualization version   Unicode version

Theorem ovoliunlem3 23272
Description: Lemma for ovoliun 23273. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovoliun.t  |-  T  =  seq 1 (  +  ,  G )
ovoliun.g  |-  G  =  ( n  e.  NN  |->  ( vol* `  A
) )
ovoliun.a  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
ovoliun.v  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  A )  e.  RR )
ovoliun.r  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
ovoliun.b  |-  ( ph  ->  B  e.  RR+ )
Assertion
Ref Expression
ovoliunlem3  |-  ( ph  ->  ( vol* `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Distinct variable groups:    B, n    ph, n    n, G    T, n
Allowed substitution hint:    A( n)

Proof of Theorem ovoliunlem3
Dummy variables  f 
g  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2764 . . . 4  |-  F/_ m A
2 nfcsb1v 3549 . . . 4  |-  F/_ n [_ m  /  n ]_ A
3 csbeq1a 3542 . . . 4  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
41, 2, 3cbviun 4557 . . 3  |-  U_ n  e.  NN  A  =  U_ m  e.  NN  [_ m  /  n ]_ A
54fveq2i 6194 . 2  |-  ( vol* `  U_ n  e.  NN  A )  =  ( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)
6 ovoliun.a . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  A  C_  RR )
7 ovoliun.v . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol* `  A )  e.  RR )
8 ovoliun.b . . . . . . 7  |-  ( ph  ->  B  e.  RR+ )
9 2nn 11185 . . . . . . . . 9  |-  2  e.  NN
10 nnnn0 11299 . . . . . . . . 9  |-  ( n  e.  NN  ->  n  e.  NN0 )
11 nnexpcl 12873 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  n  e.  NN0 )  -> 
( 2 ^ n
)  e.  NN )
129, 10, 11sylancr 695 . . . . . . . 8  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  NN )
1312nnrpd 11870 . . . . . . 7  |-  ( n  e.  NN  ->  (
2 ^ n )  e.  RR+ )
14 rpdivcl 11856 . . . . . . 7  |-  ( ( B  e.  RR+  /\  (
2 ^ n )  e.  RR+ )  ->  ( B  /  ( 2 ^ n ) )  e.  RR+ )
158, 13, 14syl2an 494 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( B  /  ( 2 ^ n ) )  e.  RR+ )
16 eqid 2622 . . . . . . 7  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)  =  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
)
1716ovolgelb 23248 . . . . . 6  |-  ( ( A  C_  RR  /\  ( vol* `  A )  e.  RR  /\  ( B  /  ( 2 ^ n ) )  e.  RR+ )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
186, 7, 15, 17syl3anc 1326 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
1918ralrimiva 2966 . . . 4  |-  ( ph  ->  A. n  e.  NN  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
20 ovex 6678 . . . . 5  |-  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  e.  _V
21 nnenom 12779 . . . . 5  |-  NN  ~~  om
22 coeq2 5280 . . . . . . . . 9  |-  ( f  =  ( g `  n )  ->  ( (,)  o.  f )  =  ( (,)  o.  (
g `  n )
) )
2322rneqd 5353 . . . . . . . 8  |-  ( f  =  ( g `  n )  ->  ran  ( (,)  o.  f )  =  ran  ( (,) 
o.  ( g `  n ) ) )
2423unieqd 4446 . . . . . . 7  |-  ( f  =  ( g `  n )  ->  U. ran  ( (,)  o.  f )  =  U. ran  ( (,)  o.  ( g `  n ) ) )
2524sseq2d 3633 . . . . . 6  |-  ( f  =  ( g `  n )  ->  ( A  C_  U. ran  ( (,)  o.  f )  <->  A  C_  U. ran  ( (,)  o.  ( g `
 n ) ) ) )
26 coeq2 5280 . . . . . . . . . 10  |-  ( f  =  ( g `  n )  ->  (
( abs  o.  -  )  o.  f )  =  ( ( abs  o.  -  )  o.  ( g `  n ) ) )
2726seqeq3d 12809 . . . . . . . . 9  |-  ( f  =  ( g `  n )  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  =  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) )
2827rneqd 5353 . . . . . . . 8  |-  ( f  =  ( g `  n )  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  f
) )  =  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) )
2928supeq1d 8352 . . . . . . 7  |-  ( f  =  ( g `  n )  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) ) ,  RR* ,  <  ) )
3029breq1d 4663 . . . . . 6  |-  ( f  =  ( g `  n )  ->  ( sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  f )
) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( B  / 
( 2 ^ n
) ) )  <->  sup ( ran  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
3125, 30anbi12d 747 . . . . 5  |-  ( f  =  ( g `  n )  ->  (
( A  C_  U. ran  ( (,)  o.  f )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  ( A  C_ 
U. ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
3220, 21, 31axcc4 9261 . . . 4  |-  ( A. n  e.  NN  E. f  e.  ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) ( A  C_  U.
ran  ( (,)  o.  f )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  f ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  ->  E. g
( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
3319, 32syl 17 . . 3  |-  ( ph  ->  E. g ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )
34 xpnnen 14939 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
3534ensymi 8006 . . . . . 6  |-  NN  ~~  ( NN  X.  NN )
36 bren 7964 . . . . . 6  |-  ( NN 
~~  ( NN  X.  NN )  <->  E. j  j : NN -1-1-onto-> ( NN  X.  NN ) )
3735, 36mpbi 220 . . . . 5  |-  E. j 
j : NN -1-1-onto-> ( NN  X.  NN )
38 ovoliun.t . . . . . . . 8  |-  T  =  seq 1 (  +  ,  G )
39 ovoliun.g . . . . . . . . 9  |-  G  =  ( n  e.  NN  |->  ( vol* `  A
) )
40 nfcv 2764 . . . . . . . . . 10  |-  F/_ m
( vol* `  A )
41 nfcv 2764 . . . . . . . . . . 11  |-  F/_ n vol*
4241, 2nffv 6198 . . . . . . . . . 10  |-  F/_ n
( vol* `  [_ m  /  n ]_ A )
433fveq2d 6195 . . . . . . . . . 10  |-  ( n  =  m  ->  ( vol* `  A )  =  ( vol* `  [_ m  /  n ]_ A ) )
4440, 42, 43cbvmpt 4749 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( vol* `  A )
)  =  ( m  e.  NN  |->  ( vol* `  [_ m  /  n ]_ A ) )
4539, 44eqtri 2644 . . . . . . . 8  |-  G  =  ( m  e.  NN  |->  ( vol* `  [_ m  /  n ]_ A ) )
46 simpll 790 . . . . . . . . 9  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  ph )
476ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  A  C_  RR )
48 nfv 1843 . . . . . . . . . . . 12  |-  F/ m  A  C_  RR
49 nfcv 2764 . . . . . . . . . . . . 13  |-  F/_ n RR
502, 49nfss 3596 . . . . . . . . . . . 12  |-  F/ n [_ m  /  n ]_ A  C_  RR
513sseq1d 3632 . . . . . . . . . . . 12  |-  ( n  =  m  ->  ( A  C_  RR  <->  [_ m  /  n ]_ A  C_  RR ) )
5248, 50, 51cbvral 3167 . . . . . . . . . . 11  |-  ( A. n  e.  NN  A  C_  RR  <->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
5347, 52sylib 208 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  [_ m  /  n ]_ A  C_  RR )
5453r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  RR )
5546, 54sylan 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  RR )
567ralrimiva 2966 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  NN  ( vol* `  A
)  e.  RR )
5740nfel1 2779 . . . . . . . . . . . 12  |-  F/ m
( vol* `  A )  e.  RR
5842nfel1 2779 . . . . . . . . . . . 12  |-  F/ n
( vol* `  [_ m  /  n ]_ A )  e.  RR
5943eleq1d 2686 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( vol* `  A )  e.  RR  <->  ( vol* `  [_ m  /  n ]_ A )  e.  RR ) )
6057, 58, 59cbvral 3167 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( vol* `  A )  e.  RR  <->  A. m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
6156, 60sylib 208 . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  NN  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
6261r19.21bi 2932 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN )  ->  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
6346, 62sylan 488 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  ( vol* `  [_ m  /  n ]_ A )  e.  RR )
64 ovoliun.r . . . . . . . . 9  |-  ( ph  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
6564ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  sup ( ran  T ,  RR* ,  <  )  e.  RR )
668ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  B  e.  RR+ )
67 eqid 2622 . . . . . . . 8  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) )  =  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) )
68 eqid 2622 . . . . . . . 8  |-  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( k  e.  NN  |->  ( ( g `
 ( 1st `  (
j `  k )
) ) `  ( 2nd `  ( j `  k ) ) ) ) ) )  =  seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `
 k ) ) ) `  ( 2nd `  ( j `  k
) ) ) ) ) )
69 eqid 2622 . . . . . . . 8  |-  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `  k
) ) ) `  ( 2nd `  ( j `
 k ) ) ) )  =  ( k  e.  NN  |->  ( ( g `  ( 1st `  ( j `  k ) ) ) `
 ( 2nd `  (
j `  k )
) ) )
70 simplr 792 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  j : NN -1-1-onto-> ( NN  X.  NN ) )
71 simprl 794 . . . . . . . 8  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN ) )
72 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  A. n  e.  NN  ( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )
73 nfv 1843 . . . . . . . . . . . 12  |-  F/ m
( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) )
74 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ n U. ran  ( (,)  o.  ( g `  m
) )
752, 74nfss 3596 . . . . . . . . . . . . 13  |-  F/ n [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )
76 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ n sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) ) ,  RR* ,  <  )
77 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ n  <_
78 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ n  +
79 nfcv 2764 . . . . . . . . . . . . . . 15  |-  F/_ n
( B  /  (
2 ^ m ) )
8042, 78, 79nfov 6676 . . . . . . . . . . . . . 14  |-  F/_ n
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) )
8176, 77, 80nfbr 4699 . . . . . . . . . . . . 13  |-  F/ n sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  m ) ) ) ,  RR* ,  <  )  <_  ( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) )
8275, 81nfan 1828 . . . . . . . . . . . 12  |-  F/ n
( [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) )
83 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
8483coeq2d 5284 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  ( (,)  o.  ( g `  n ) )  =  ( (,)  o.  (
g `  m )
) )
8584rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ran  ( (,)  o.  ( g `
 n ) )  =  ran  ( (,) 
o.  ( g `  m ) ) )
8685unieqd 4446 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  U. ran  ( (,)  o.  ( g `
 n ) )  =  U. ran  ( (,)  o.  ( g `  m ) ) )
873, 86sseq12d 3634 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( A  C_  U. ran  ( (,)  o.  ( g `  n ) )  <->  [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) ) ) )
8883coeq2d 5284 . . . . . . . . . . . . . . . . 17  |-  ( n  =  m  ->  (
( abs  o.  -  )  o.  ( g `  n
) )  =  ( ( abs  o.  -  )  o.  ( g `  m ) ) )
8988seqeq3d 12809 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) )  =  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) )
9089rneqd 5353 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  n )
) )  =  ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) )
9190supeq1d 8352 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  =  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  ) )
92 oveq2 6658 . . . . . . . . . . . . . . . 16  |-  ( n  =  m  ->  (
2 ^ n )  =  ( 2 ^ m ) )
9392oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( n  =  m  ->  ( B  /  ( 2 ^ n ) )  =  ( B  /  (
2 ^ m ) ) )
9443, 93oveq12d 6668 . . . . . . . . . . . . . 14  |-  ( n  =  m  ->  (
( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) )  =  ( ( vol* `  [_ m  /  n ]_ A )  +  ( B  / 
( 2 ^ m
) ) ) )
9591, 94breq12d 4666 . . . . . . . . . . . . 13  |-  ( n  =  m  ->  ( sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  n ) ) ) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) )  <->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  )  <_  (
( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9687, 95anbi12d 747 . . . . . . . . . . . 12  |-  ( n  =  m  ->  (
( A  C_  U. ran  ( (,)  o.  ( g `
 n ) )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  ( [_ m  /  n ]_ A  C_ 
U. ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) ) )
9773, 82, 96cbvral 3167 . . . . . . . . . . 11  |-  ( A. n  e.  NN  ( A  C_  U. ran  ( (,)  o.  ( g `  n ) )  /\  sup ( ran  seq 1
(  +  ,  ( ( abs  o.  -  )  o.  ( g `  n ) ) ) ,  RR* ,  <  )  <_  ( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) )  <->  A. m  e.  NN  ( [_ m  /  n ]_ A  C_  U.
ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9872, 97sylib 208 . . . . . . . . . 10  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  A. m  e.  NN  ( [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) )  /\  sup ( ran 
seq 1 (  +  ,  ( ( abs 
o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
9998r19.21bi 2932 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  ( [_ m  /  n ]_ A  C_  U.
ran  ( (,)  o.  ( g `  m
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  m
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) ) )
10099simpld 475 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  [_ m  /  n ]_ A  C_  U. ran  ( (,)  o.  ( g `
 m ) ) )
10199simprd 479 . . . . . . . 8  |-  ( ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  /\  m  e.  NN )  ->  sup ( ran  seq 1 (  +  , 
( ( abs  o.  -  )  o.  (
g `  m )
) ) ,  RR* ,  <  )  <_  (
( vol* `  [_ m  /  n ]_ A )  +  ( B  /  ( 2 ^ m ) ) ) )
10238, 45, 55, 63, 65, 66, 67, 68, 69, 70, 71, 100, 101ovoliunlem2 23271 . . . . . . 7  |-  ( ( ( ph  /\  j : NN -1-1-onto-> ( NN  X.  NN ) )  /\  (
g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) ) )  ->  ( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A )  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B ) )
103102exp31 630 . . . . . 6  |-  ( ph  ->  ( j : NN -1-1-onto-> ( NN  X.  NN )  -> 
( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) ) )
104103exlimdv 1861 . . . . 5  |-  ( ph  ->  ( E. j  j : NN -1-1-onto-> ( NN  X.  NN )  ->  ( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) ) )
10537, 104mpi 20 . . . 4  |-  ( ph  ->  ( ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) )
106105exlimdv 1861 . . 3  |-  ( ph  ->  ( E. g ( g : NN --> ( (  <_  i^i  ( RR  X.  RR ) )  ^m  NN )  /\  A. n  e.  NN  ( A  C_  U.
ran  ( (,)  o.  ( g `  n
) )  /\  sup ( ran  seq 1 (  +  ,  ( ( abs  o.  -  )  o.  ( g `  n
) ) ) , 
RR* ,  <  )  <_ 
( ( vol* `  A )  +  ( B  /  ( 2 ^ n ) ) ) ) )  -> 
( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) ) )
10733, 106mpd 15 . 2  |-  ( ph  ->  ( vol* `  U_ m  e.  NN  [_ m  /  n ]_ A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
1085, 107syl5eqbr 4688 1  |-  ( ph  ->  ( vol* `  U_ n  e.  NN  A
)  <_  ( sup ( ran  T ,  RR* ,  <  )  +  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   [_csb 3533    i^i cin 3573    C_ wss 3574   U.cuni 4436   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   ran crn 5115    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ~~ cen 7952   supcsup 8346   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075    - cmin 10266    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   (,)cioo 12175    seqcseq 12801   ^cexp 12860   abscabs 13974   vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-ovol 23233
This theorem is referenced by:  ovoliun  23273
  Copyright terms: Public domain W3C validator