MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolunlem1 Structured version   Visualization version   GIF version

Theorem ovolunlem1 23265
Description: Lemma for ovolun 23267. (Contributed by Mario Carneiro, 12-Jun-2014.)
Hypotheses
Ref Expression
ovolun.a (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
ovolun.b (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
ovolun.c (𝜑𝐶 ∈ ℝ+)
ovolun.s 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
ovolun.t 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
ovolun.u 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
ovolun.f1 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
ovolun.f2 (𝜑𝐴 ran ((,) ∘ 𝐹))
ovolun.f3 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2)))
ovolun.g1 (𝜑𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
ovolun.g2 (𝜑𝐵 ran ((,) ∘ 𝐺))
ovolun.g3 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))
ovolun.h 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))))
Assertion
Ref Expression
ovolunlem1 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐹   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑈(𝑛)   𝐻(𝑛)

Proof of Theorem ovolunlem1
Dummy variables 𝑘 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolun.a . . . . 5 (𝜑 → (𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ))
21simpld 475 . . . 4 (𝜑𝐴 ⊆ ℝ)
3 ovolun.b . . . . 5 (𝜑 → (𝐵 ⊆ ℝ ∧ (vol*‘𝐵) ∈ ℝ))
43simpld 475 . . . 4 (𝜑𝐵 ⊆ ℝ)
52, 4unssd 3789 . . 3 (𝜑 → (𝐴𝐵) ⊆ ℝ)
6 ovolun.g1 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
7 reex 10027 . . . . . . . . . . . . . . 15 ℝ ∈ V
87, 7xpex 6962 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
98inex2 4800 . . . . . . . . . . . . 13 ( ≤ ∩ (ℝ × ℝ)) ∈ V
10 nnex 11026 . . . . . . . . . . . . 13 ℕ ∈ V
119, 10elmap 7886 . . . . . . . . . . . 12 (𝐺 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
126, 11sylib 208 . . . . . . . . . . 11 (𝜑𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1312adantr 481 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
1413ffvelrnda 6359 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ (𝑛 / 2) ∈ ℕ) → (𝐺‘(𝑛 / 2)) ∈ ( ≤ ∩ (ℝ × ℝ)))
15 nneo 11461 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈ ℕ))
1615adantl 482 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / 2) ∈ ℕ ↔ ¬ ((𝑛 + 1) / 2) ∈ ℕ))
1716con2bid 344 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (((𝑛 + 1) / 2) ∈ ℕ ↔ ¬ (𝑛 / 2) ∈ ℕ))
1817biimpar 502 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) → ((𝑛 + 1) / 2) ∈ ℕ)
19 ovolun.f1 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
209, 10elmap 7886 . . . . . . . . . . . . 13 (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2119, 20sylib 208 . . . . . . . . . . . 12 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2221adantr 481 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2322ffvelrnda 6359 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ ((𝑛 + 1) / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2418, 23syldan 487 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ ¬ (𝑛 / 2) ∈ ℕ) → (𝐹‘((𝑛 + 1) / 2)) ∈ ( ≤ ∩ (ℝ × ℝ)))
2514, 24ifclda 4120 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) ∈ ( ≤ ∩ (ℝ × ℝ)))
26 ovolun.h . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))))
2725, 26fmptd 6385 . . . . . . 7 (𝜑𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 eqid 2622 . . . . . . . 8 ((abs ∘ − ) ∘ 𝐻) = ((abs ∘ − ) ∘ 𝐻)
29 ovolun.u . . . . . . . 8 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻))
3028, 29ovolsf 23241 . . . . . . 7 (𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑈:ℕ⟶(0[,)+∞))
3127, 30syl 17 . . . . . 6 (𝜑𝑈:ℕ⟶(0[,)+∞))
32 rge0ssre 12280 . . . . . 6 (0[,)+∞) ⊆ ℝ
33 fss 6056 . . . . . 6 ((𝑈:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝑈:ℕ⟶ℝ)
3431, 32, 33sylancl 694 . . . . 5 (𝜑𝑈:ℕ⟶ℝ)
35 frn 6053 . . . . 5 (𝑈:ℕ⟶ℝ → ran 𝑈 ⊆ ℝ)
3634, 35syl 17 . . . 4 (𝜑 → ran 𝑈 ⊆ ℝ)
37 1nn 11031 . . . . . . 7 1 ∈ ℕ
38 1z 11407 . . . . . . . . . 10 1 ∈ ℤ
39 seqfn 12813 . . . . . . . . . 10 (1 ∈ ℤ → seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn (ℤ‘1))
4038, 39mp1i 13 . . . . . . . . 9 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn (ℤ‘1))
4129fneq1i 5985 . . . . . . . . . 10 (𝑈 Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn ℕ)
42 nnuz 11723 . . . . . . . . . . 11 ℕ = (ℤ‘1)
4342fneq2i 5986 . . . . . . . . . 10 (seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn (ℤ‘1))
4441, 43bitri 264 . . . . . . . . 9 (𝑈 Fn ℕ ↔ seq1( + , ((abs ∘ − ) ∘ 𝐻)) Fn (ℤ‘1))
4540, 44sylibr 224 . . . . . . . 8 (𝜑𝑈 Fn ℕ)
46 fndm 5990 . . . . . . . 8 (𝑈 Fn ℕ → dom 𝑈 = ℕ)
4745, 46syl 17 . . . . . . 7 (𝜑 → dom 𝑈 = ℕ)
4837, 47syl5eleqr 2708 . . . . . 6 (𝜑 → 1 ∈ dom 𝑈)
49 ne0i 3921 . . . . . 6 (1 ∈ dom 𝑈 → dom 𝑈 ≠ ∅)
5048, 49syl 17 . . . . 5 (𝜑 → dom 𝑈 ≠ ∅)
51 dm0rn0 5342 . . . . . 6 (dom 𝑈 = ∅ ↔ ran 𝑈 = ∅)
5251necon3bii 2846 . . . . 5 (dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅)
5350, 52sylib 208 . . . 4 (𝜑 → ran 𝑈 ≠ ∅)
541simprd 479 . . . . . . . 8 (𝜑 → (vol*‘𝐴) ∈ ℝ)
553simprd 479 . . . . . . . 8 (𝜑 → (vol*‘𝐵) ∈ ℝ)
5654, 55readdcld 10069 . . . . . . 7 (𝜑 → ((vol*‘𝐴) + (vol*‘𝐵)) ∈ ℝ)
57 ovolun.c . . . . . . . 8 (𝜑𝐶 ∈ ℝ+)
5857rpred 11872 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
5956, 58readdcld 10069 . . . . . 6 (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ)
60 ovolun.s . . . . . . . . 9 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹))
61 ovolun.t . . . . . . . . 9 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺))
62 ovolun.f2 . . . . . . . . 9 (𝜑𝐴 ran ((,) ∘ 𝐹))
63 ovolun.f3 . . . . . . . . 9 (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐴) + (𝐶 / 2)))
64 ovolun.g2 . . . . . . . . 9 (𝜑𝐵 ran ((,) ∘ 𝐺))
65 ovolun.g3 . . . . . . . . 9 (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐵) + (𝐶 / 2)))
661, 3, 57, 60, 61, 29, 19, 62, 63, 6, 64, 65, 26ovolunlem1a 23264 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (𝑈𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
6766ralrimiva 2966 . . . . . . 7 (𝜑 → ∀𝑘 ∈ ℕ (𝑈𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
68 breq1 4656 . . . . . . . . 9 (𝑧 = (𝑈𝑘) → (𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ (𝑈𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
6968ralrn 6362 . . . . . . . 8 (𝑈 Fn ℕ → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
7045, 69syl 17 . . . . . . 7 (𝜑 → (∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑘 ∈ ℕ (𝑈𝑘) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
7167, 70mpbird 247 . . . . . 6 (𝜑 → ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
72 breq2 4657 . . . . . . . 8 (𝑘 = (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) → (𝑧𝑘𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
7372ralbidv 2986 . . . . . . 7 (𝑘 = (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) → (∀𝑧 ∈ ran 𝑈 𝑧𝑘 ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
7473rspcev 3309 . . . . . 6 (((((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ ∧ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)) → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑘)
7559, 71, 74syl2anc 693 . . . . 5 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑘)
76 ressxr 10083 . . . . . . 7 ℝ ⊆ ℝ*
7736, 76syl6ss 3615 . . . . . 6 (𝜑 → ran 𝑈 ⊆ ℝ*)
78 supxrbnd2 12152 . . . . . 6 (ran 𝑈 ⊆ ℝ* → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑘 ↔ sup(ran 𝑈, ℝ*, < ) < +∞))
7977, 78syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ ℝ ∀𝑧 ∈ ran 𝑈 𝑧𝑘 ↔ sup(ran 𝑈, ℝ*, < ) < +∞))
8075, 79mpbid 222 . . . 4 (𝜑 → sup(ran 𝑈, ℝ*, < ) < +∞)
81 supxrbnd 12158 . . . 4 ((ran 𝑈 ⊆ ℝ ∧ ran 𝑈 ≠ ∅ ∧ sup(ran 𝑈, ℝ*, < ) < +∞) → sup(ran 𝑈, ℝ*, < ) ∈ ℝ)
8236, 53, 80, 81syl3anc 1326 . . 3 (𝜑 → sup(ran 𝑈, ℝ*, < ) ∈ ℝ)
83 nncn 11028 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ → 𝑚 ∈ ℂ)
8483adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℂ)
85842timesd 11275 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (2 · 𝑚) = (𝑚 + 𝑚))
8685oveq1d 6665 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = ((𝑚 + 𝑚) − 1))
87 1cnd 10056 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → 1 ∈ ℂ)
8884, 84, 87addsubassd 10412 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((𝑚 + 𝑚) − 1) = (𝑚 + (𝑚 − 1)))
8986, 88eqtrd 2656 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) = (𝑚 + (𝑚 − 1)))
90 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → 𝑚 ∈ ℕ)
91 nnm1nn0 11334 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → (𝑚 − 1) ∈ ℕ0)
9291adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → (𝑚 − 1) ∈ ℕ0)
93 nnnn0addcl 11323 . . . . . . . . . . . . 13 ((𝑚 ∈ ℕ ∧ (𝑚 − 1) ∈ ℕ0) → (𝑚 + (𝑚 − 1)) ∈ ℕ)
9490, 92, 93syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝑚 + (𝑚 − 1)) ∈ ℕ)
9589, 94eqeltrd 2701 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → ((2 · 𝑚) − 1) ∈ ℕ)
96 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑛 = ((2 · 𝑚) − 1) → (𝑛 / 2) = (((2 · 𝑚) − 1) / 2))
9796eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑚) − 1) → ((𝑛 / 2) ∈ ℕ ↔ (((2 · 𝑚) − 1) / 2) ∈ ℕ))
9896fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑚) − 1) → (𝐺‘(𝑛 / 2)) = (𝐺‘(((2 · 𝑚) − 1) / 2)))
99 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑛 = ((2 · 𝑚) − 1) → (𝑛 + 1) = (((2 · 𝑚) − 1) + 1))
10099oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑛 = ((2 · 𝑚) − 1) → ((𝑛 + 1) / 2) = ((((2 · 𝑚) − 1) + 1) / 2))
101100fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑛 = ((2 · 𝑚) − 1) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)))
10297, 98, 101ifbieq12d 4113 . . . . . . . . . . . . . 14 (𝑛 = ((2 · 𝑚) − 1) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if((((2 · 𝑚) − 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))))
103 fvex 6201 . . . . . . . . . . . . . . 15 (𝐺‘(((2 · 𝑚) − 1) / 2)) ∈ V
104 fvex 6201 . . . . . . . . . . . . . . 15 (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) ∈ V
105103, 104ifex 4156 . . . . . . . . . . . . . 14 if((((2 · 𝑚) − 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) ∈ V
106102, 26, 105fvmpt 6282 . . . . . . . . . . . . 13 (((2 · 𝑚) − 1) ∈ ℕ → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))))
10795, 106syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = if((((2 · 𝑚) − 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))))
108 2nn 11185 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℕ
109 nnmulcl 11043 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (2 · 𝑚) ∈ ℕ)
110108, 90, 109sylancr 695 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ ℕ) → (2 · 𝑚) ∈ ℕ)
111110nncnd 11036 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ ℕ) → (2 · 𝑚) ∈ ℂ)
112 ax-1cn 9994 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
113 npcan 10290 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑚) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑚) − 1) + 1) = (2 · 𝑚))
114111, 112, 113sylancl 694 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ ℕ) → (((2 · 𝑚) − 1) + 1) = (2 · 𝑚))
115114oveq1d 6665 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = ((2 · 𝑚) / 2))
116 2cn 11091 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
117 2ne0 11113 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
118 divcan3 10711 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑚) / 2) = 𝑚)
119116, 117, 118mp3an23 1416 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℂ → ((2 · 𝑚) / 2) = 𝑚)
12084, 119syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) = 𝑚)
121115, 120eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) = 𝑚)
122121, 90eqeltrd 2701 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) + 1) / 2) ∈ ℕ)
123 nneo 11461 . . . . . . . . . . . . . . . 16 (((2 · 𝑚) − 1) ∈ ℕ → ((((2 · 𝑚) − 1) / 2) ∈ ℕ ↔ ¬ ((((2 · 𝑚) − 1) + 1) / 2) ∈ ℕ))
12495, 123syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ ℕ) → ((((2 · 𝑚) − 1) / 2) ∈ ℕ ↔ ¬ ((((2 · 𝑚) − 1) + 1) / 2) ∈ ℕ))
125124con2bid 344 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℕ) → (((((2 · 𝑚) − 1) + 1) / 2) ∈ ℕ ↔ ¬ (((2 · 𝑚) − 1) / 2) ∈ ℕ))
126122, 125mpbid 222 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ¬ (((2 · 𝑚) − 1) / 2) ∈ ℕ)
127126iffalsed 4097 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → if((((2 · 𝑚) − 1) / 2) ∈ ℕ, (𝐺‘(((2 · 𝑚) − 1) / 2)), (𝐹‘((((2 · 𝑚) − 1) + 1) / 2))) = (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)))
128121fveq2d 6195 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐹‘((((2 · 𝑚) − 1) + 1) / 2)) = (𝐹𝑚))
129107, 127, 1283eqtrd 2660 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐻‘((2 · 𝑚) − 1)) = (𝐹𝑚))
130 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = ((2 · 𝑚) − 1) → (𝐻𝑘) = (𝐻‘((2 · 𝑚) − 1)))
131130eqeq1d 2624 . . . . . . . . . . . 12 (𝑘 = ((2 · 𝑚) − 1) → ((𝐻𝑘) = (𝐹𝑚) ↔ (𝐻‘((2 · 𝑚) − 1)) = (𝐹𝑚)))
132131rspcev 3309 . . . . . . . . . . 11 ((((2 · 𝑚) − 1) ∈ ℕ ∧ (𝐻‘((2 · 𝑚) − 1)) = (𝐹𝑚)) → ∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐹𝑚))
13395, 129, 132syl2anc 693 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐹𝑚))
134 fveq2 6191 . . . . . . . . . . . . . 14 ((𝐻𝑘) = (𝐹𝑚) → (1st ‘(𝐻𝑘)) = (1st ‘(𝐹𝑚)))
135134breq1d 4663 . . . . . . . . . . . . 13 ((𝐻𝑘) = (𝐹𝑚) → ((1st ‘(𝐻𝑘)) < 𝑧 ↔ (1st ‘(𝐹𝑚)) < 𝑧))
136 fveq2 6191 . . . . . . . . . . . . . 14 ((𝐻𝑘) = (𝐹𝑚) → (2nd ‘(𝐻𝑘)) = (2nd ‘(𝐹𝑚)))
137136breq2d 4665 . . . . . . . . . . . . 13 ((𝐻𝑘) = (𝐹𝑚) → (𝑧 < (2nd ‘(𝐻𝑘)) ↔ 𝑧 < (2nd ‘(𝐹𝑚))))
138135, 137anbi12d 747 . . . . . . . . . . . 12 ((𝐻𝑘) = (𝐹𝑚) → (((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘))) ↔ ((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚)))))
139138biimprcd 240 . . . . . . . . . . 11 (((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚))) → ((𝐻𝑘) = (𝐹𝑚) → ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
140139reximdv 3016 . . . . . . . . . 10 (((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚))) → (∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐹𝑚) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
141133, 140syl5com 31 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚))) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
142141rexlimdva 3031 . . . . . . . 8 (𝜑 → (∃𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚))) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
143142ralimdv 2963 . . . . . . 7 (𝜑 → (∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚))) → ∀𝑧𝐴𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
144 ovolfioo 23236 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚)))))
1452, 21, 144syl2anc 693 . . . . . . 7 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) ↔ ∀𝑧𝐴𝑚 ∈ ℕ ((1st ‘(𝐹𝑚)) < 𝑧𝑧 < (2nd ‘(𝐹𝑚)))))
146 ovolfioo 23236 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧𝐴𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
1472, 27, 146syl2anc 693 . . . . . . 7 (𝜑 → (𝐴 ran ((,) ∘ 𝐻) ↔ ∀𝑧𝐴𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
148143, 145, 1473imtr4d 283 . . . . . 6 (𝜑 → (𝐴 ran ((,) ∘ 𝐹) → 𝐴 ran ((,) ∘ 𝐻)))
14962, 148mpd 15 . . . . 5 (𝜑𝐴 ran ((,) ∘ 𝐻))
150 oveq1 6657 . . . . . . . . . . . . . . . 16 (𝑛 = (2 · 𝑚) → (𝑛 / 2) = ((2 · 𝑚) / 2))
151150eleq1d 2686 . . . . . . . . . . . . . . 15 (𝑛 = (2 · 𝑚) → ((𝑛 / 2) ∈ ℕ ↔ ((2 · 𝑚) / 2) ∈ ℕ))
152150fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑛 = (2 · 𝑚) → (𝐺‘(𝑛 / 2)) = (𝐺‘((2 · 𝑚) / 2)))
153 oveq1 6657 . . . . . . . . . . . . . . . . 17 (𝑛 = (2 · 𝑚) → (𝑛 + 1) = ((2 · 𝑚) + 1))
154153oveq1d 6665 . . . . . . . . . . . . . . . 16 (𝑛 = (2 · 𝑚) → ((𝑛 + 1) / 2) = (((2 · 𝑚) + 1) / 2))
155154fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑛 = (2 · 𝑚) → (𝐹‘((𝑛 + 1) / 2)) = (𝐹‘(((2 · 𝑚) + 1) / 2)))
156151, 152, 155ifbieq12d 4113 . . . . . . . . . . . . . 14 (𝑛 = (2 · 𝑚) → if((𝑛 / 2) ∈ ℕ, (𝐺‘(𝑛 / 2)), (𝐹‘((𝑛 + 1) / 2))) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))))
157 fvex 6201 . . . . . . . . . . . . . . 15 (𝐺‘((2 · 𝑚) / 2)) ∈ V
158 fvex 6201 . . . . . . . . . . . . . . 15 (𝐹‘(((2 · 𝑚) + 1) / 2)) ∈ V
159157, 158ifex 4156 . . . . . . . . . . . . . 14 if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) ∈ V
160156, 26, 159fvmpt 6282 . . . . . . . . . . . . 13 ((2 · 𝑚) ∈ ℕ → (𝐻‘(2 · 𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))))
161110, 160syl 17 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))))
162120, 90eqeltrd 2701 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℕ) → ((2 · 𝑚) / 2) ∈ ℕ)
163162iftrued 4094 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → if(((2 · 𝑚) / 2) ∈ ℕ, (𝐺‘((2 · 𝑚) / 2)), (𝐹‘(((2 · 𝑚) + 1) / 2))) = (𝐺‘((2 · 𝑚) / 2)))
164120fveq2d 6195 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℕ) → (𝐺‘((2 · 𝑚) / 2)) = (𝐺𝑚))
165161, 163, 1643eqtrd 2660 . . . . . . . . . . 11 ((𝜑𝑚 ∈ ℕ) → (𝐻‘(2 · 𝑚)) = (𝐺𝑚))
166 fveq2 6191 . . . . . . . . . . . . 13 (𝑘 = (2 · 𝑚) → (𝐻𝑘) = (𝐻‘(2 · 𝑚)))
167166eqeq1d 2624 . . . . . . . . . . . 12 (𝑘 = (2 · 𝑚) → ((𝐻𝑘) = (𝐺𝑚) ↔ (𝐻‘(2 · 𝑚)) = (𝐺𝑚)))
168167rspcev 3309 . . . . . . . . . . 11 (((2 · 𝑚) ∈ ℕ ∧ (𝐻‘(2 · 𝑚)) = (𝐺𝑚)) → ∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐺𝑚))
169110, 165, 168syl2anc 693 . . . . . . . . . 10 ((𝜑𝑚 ∈ ℕ) → ∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐺𝑚))
170 fveq2 6191 . . . . . . . . . . . . . 14 ((𝐻𝑘) = (𝐺𝑚) → (1st ‘(𝐻𝑘)) = (1st ‘(𝐺𝑚)))
171170breq1d 4663 . . . . . . . . . . . . 13 ((𝐻𝑘) = (𝐺𝑚) → ((1st ‘(𝐻𝑘)) < 𝑧 ↔ (1st ‘(𝐺𝑚)) < 𝑧))
172 fveq2 6191 . . . . . . . . . . . . . 14 ((𝐻𝑘) = (𝐺𝑚) → (2nd ‘(𝐻𝑘)) = (2nd ‘(𝐺𝑚)))
173172breq2d 4665 . . . . . . . . . . . . 13 ((𝐻𝑘) = (𝐺𝑚) → (𝑧 < (2nd ‘(𝐻𝑘)) ↔ 𝑧 < (2nd ‘(𝐺𝑚))))
174171, 173anbi12d 747 . . . . . . . . . . . 12 ((𝐻𝑘) = (𝐺𝑚) → (((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘))) ↔ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
175174biimprcd 240 . . . . . . . . . . 11 (((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚))) → ((𝐻𝑘) = (𝐺𝑚) → ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
176175reximdv 3016 . . . . . . . . . 10 (((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚))) → (∃𝑘 ∈ ℕ (𝐻𝑘) = (𝐺𝑚) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
177169, 176syl5com 31 . . . . . . . . 9 ((𝜑𝑚 ∈ ℕ) → (((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚))) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
178177rexlimdva 3031 . . . . . . . 8 (𝜑 → (∃𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚))) → ∃𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
179178ralimdv 2963 . . . . . . 7 (𝜑 → (∀𝑧𝐵𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚))) → ∀𝑧𝐵𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
180 ovolfioo 23236 . . . . . . . 8 ((𝐵 ⊆ ℝ ∧ 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐵𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
1814, 12, 180syl2anc 693 . . . . . . 7 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) ↔ ∀𝑧𝐵𝑚 ∈ ℕ ((1st ‘(𝐺𝑚)) < 𝑧𝑧 < (2nd ‘(𝐺𝑚)))))
182 ovolfioo 23236 . . . . . . . 8 ((𝐵 ⊆ ℝ ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ))) → (𝐵 ran ((,) ∘ 𝐻) ↔ ∀𝑧𝐵𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
1834, 27, 182syl2anc 693 . . . . . . 7 (𝜑 → (𝐵 ran ((,) ∘ 𝐻) ↔ ∀𝑧𝐵𝑘 ∈ ℕ ((1st ‘(𝐻𝑘)) < 𝑧𝑧 < (2nd ‘(𝐻𝑘)))))
184179, 181, 1833imtr4d 283 . . . . . 6 (𝜑 → (𝐵 ran ((,) ∘ 𝐺) → 𝐵 ran ((,) ∘ 𝐻)))
18564, 184mpd 15 . . . . 5 (𝜑𝐵 ran ((,) ∘ 𝐻))
186149, 185unssd 3789 . . . 4 (𝜑 → (𝐴𝐵) ⊆ ran ((,) ∘ 𝐻))
18729ovollb 23247 . . . 4 ((𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ (𝐴𝐵) ⊆ ran ((,) ∘ 𝐻)) → (vol*‘(𝐴𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
18827, 186, 187syl2anc 693 . . 3 (𝜑 → (vol*‘(𝐴𝐵)) ≤ sup(ran 𝑈, ℝ*, < ))
189 ovollecl 23251 . . 3 (((𝐴𝐵) ⊆ ℝ ∧ sup(ran 𝑈, ℝ*, < ) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ≤ sup(ran 𝑈, ℝ*, < )) → (vol*‘(𝐴𝐵)) ∈ ℝ)
1905, 82, 188, 189syl3anc 1326 . 2 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ)
19159rexrd 10089 . . . 4 (𝜑 → (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ*)
192 supxrleub 12156 . . . 4 ((ran 𝑈 ⊆ ℝ* ∧ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ∈ ℝ*) → (sup(ran 𝑈, ℝ*, < ) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
19377, 191, 192syl2anc 693 . . 3 (𝜑 → (sup(ran 𝑈, ℝ*, < ) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶) ↔ ∀𝑧 ∈ ran 𝑈 𝑧 ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶)))
19471, 193mpbird 247 . 2 (𝜑 → sup(ran 𝑈, ℝ*, < ) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
195190, 82, 59, 188, 194letrd 10194 1 (𝜑 → (vol*‘(𝐴𝐵)) ≤ (((vol*‘𝐴) + (vol*‘𝐵)) + 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cun 3572  cin 3573  wss 3574  c0 3915  ifcif 4086   cuni 4436   class class class wbr 4653  cmpt 4729   × cxp 5112  dom cdm 5114  ran crn 5115  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  +crp 11832  (,)cioo 12175  [,)cico 12177  seqcseq 12801  abscabs 13974  vol*covol 23231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-ovol 23233
This theorem is referenced by:  ovolunlem2  23266
  Copyright terms: Public domain W3C validator