![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version |
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundgt1 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 10055 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
2 | eldifi 3732 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
3 | 2 | peano2nnd 11037 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
4 | 3 | nnrpd 11870 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
5 | 4 | rpsqrtcld 14150 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
6 | 5 | rpred 11872 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
7 | 2 | nnrpd 11870 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
8 | 7 | rpsqrtcld 14150 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
9 | 8 | rpred 11872 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
10 | 6, 9 | readdcld 10069 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
11 | pellfundre 37445 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
12 | sqrt1 14012 | . . . . 5 ⊢ (√‘1) = 1 | |
13 | 12, 1 | syl5eqel 2705 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ) |
14 | 13, 13 | readdcld 10069 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ) |
15 | 1lt2 11194 | . . . . 5 ⊢ 1 < 2 | |
16 | 12, 12 | oveq12i 6662 | . . . . . 6 ⊢ ((√‘1) + (√‘1)) = (1 + 1) |
17 | 1p1e2 11134 | . . . . . 6 ⊢ (1 + 1) = 2 | |
18 | 16, 17 | eqtri 2644 | . . . . 5 ⊢ ((√‘1) + (√‘1)) = 2 |
19 | 15, 18 | breqtrri 4680 | . . . 4 ⊢ 1 < ((√‘1) + (√‘1)) |
20 | 19 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1))) |
21 | 3 | nnge1d 11063 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1)) |
22 | 0le1 10551 | . . . . . . 7 ⊢ 0 ≤ 1 | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1) |
24 | 2 | nnred 11035 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ) |
25 | peano2re 10209 | . . . . . . 7 ⊢ (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ) |
27 | 3 | nnnn0d 11351 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0) |
28 | 27 | nn0ge0d 11354 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1)) |
29 | 1, 23, 26, 28 | sqrtled 14165 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1)))) |
30 | 21, 29 | mpbid 222 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1))) |
31 | 2 | nnge1d 11063 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷) |
32 | 2 | nnnn0d 11351 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0) |
33 | 32 | nn0ge0d 11354 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷) |
34 | 1, 23, 24, 33 | sqrtled 14165 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷))) |
35 | 31, 34 | mpbid 222 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷)) |
36 | 13, 13, 6, 9, 30, 35 | le2addd 10646 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷))) |
37 | 1, 14, 10, 20, 36 | ltletrd 10197 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷))) |
38 | pellfundge 37446 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | |
39 | 1, 10, 11, 37, 38 | ltletrd 10197 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∖ cdif 3571 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 < clt 10074 ≤ cle 10075 ℕcn 11020 2c2 11070 √csqrt 13973 ◻NNcsquarenn 37400 PellFundcpellfund 37404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-ico 12181 df-fz 12327 df-fl 12593 df-mod 12669 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-dvds 14984 df-gcd 15217 df-numer 15443 df-denom 15444 df-squarenn 37405 df-pell1qr 37406 df-pell14qr 37407 df-pell1234qr 37408 df-pellfund 37409 |
This theorem is referenced by: pellfundex 37450 pellfundrp 37452 pellfundne1 37453 pellfund14 37462 |
Copyright terms: Public domain | W3C validator |