Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundex Structured version   Visualization version   GIF version

Theorem pellfundex 37450
Description: The fundamental solution as an infimum is itself a solution, showing that the solution set is discrete.

Since the fundamental solution is an infimum, there must be an element ge to Fund and lt 2*Fund. If this element is equal to the fundamental solution we're done, otherwise use the infimum again to find another element which must be ge Fund and lt the first element; their ratio is a group element in (1,2), contradicting pell14qrgapw 37440. (Contributed by Stefan O'Rear, 18-Sep-2014.)

Assertion
Ref Expression
pellfundex (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))

Proof of Theorem pellfundex
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2re 11090 . . . 4 2 ∈ ℝ
2 pellfundre 37445 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
3 remulcl 10021 . . . 4 ((2 ∈ ℝ ∧ (PellFund‘𝐷) ∈ ℝ) → (2 · (PellFund‘𝐷)) ∈ ℝ)
41, 2, 3sylancr 695 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) ∈ ℝ)
5 0red 10041 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ∈ ℝ)
6 1red 10055 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
7 0lt1 10550 . . . . . . . 8 0 < 1
87a1i 11 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < 1)
9 pellfundgt1 37447 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
105, 6, 2, 8, 9lttrd 10198 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 < (PellFund‘𝐷))
112, 10elrpd 11869 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ+)
122, 11ltaddrpd 11905 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < ((PellFund‘𝐷) + (PellFund‘𝐷)))
132recnd 10068 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℂ)
14132timesd 11275 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (2 · (PellFund‘𝐷)) = ((PellFund‘𝐷) + (PellFund‘𝐷)))
1512, 14breqtrrd 4681 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) < (2 · (PellFund‘𝐷)))
16 pellfundglb 37449 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (2 · (PellFund‘𝐷)) ∈ ℝ ∧ (PellFund‘𝐷) < (2 · (PellFund‘𝐷))) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
174, 15, 16mpd3an23 1426 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))))
182adantr 481 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (PellFund‘𝐷) ∈ ℝ)
19 pell1qrss14 37432 . . . . . . . 8 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
2019sselda 3603 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ (Pell14QR‘𝐷))
21 pell14qrre 37421 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷)) → 𝑎 ∈ ℝ)
2220, 21syldan 487 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → 𝑎 ∈ ℝ)
2318, 22leloed 10180 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 ↔ ((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎)))
24 simp-4l 806 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝐷 ∈ (ℕ ∖ ◻NN))
25 simp-4r 807 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ (Pell1QR‘𝐷))
26 simplr 792 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell1QR‘𝐷))
27 simprr 796 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 < 𝑎)
2822ad3antrrr 766 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 ∈ ℝ)
294ad4antr 768 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ∈ ℝ)
3019ad4antr 768 . . . . . . . . . . . . 13 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
3130, 26sseldd 3604 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ (Pell14QR‘𝐷))
32 pell14qrre 37421 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 𝑏 ∈ ℝ)
3324, 31, 32syl2anc 693 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑏 ∈ ℝ)
34 remulcl 10021 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (2 · 𝑏) ∈ ℝ)
351, 33, 34sylancr 695 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · 𝑏) ∈ ℝ)
36 simprr 796 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 < (2 · (PellFund‘𝐷)))
3736ad2antrr 762 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · (PellFund‘𝐷)))
38 simprl 794 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ≤ 𝑏)
392ad4antr 768 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ ℝ)
401a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 2 ∈ ℝ)
41 2pos 11112 . . . . . . . . . . . . 13 0 < 2
4241a1i 11 . . . . . . . . . . . 12 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 0 < 2)
43 lemul2 10876 . . . . . . . . . . . 12 (((PellFund‘𝐷) ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4439, 33, 40, 42, 43syl112anc 1330 . . . . . . . . . . 11 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → ((PellFund‘𝐷) ≤ 𝑏 ↔ (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏)))
4538, 44mpbid 222 . . . . . . . . . 10 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (2 · (PellFund‘𝐷)) ≤ (2 · 𝑏))
4628, 29, 35, 37, 45ltletrd 10197 . . . . . . . . 9 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → 𝑎 < (2 · 𝑏))
47 simp1 1061 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝐷 ∈ (ℕ ∖ ◻NN))
48193ad2ant1 1082 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (Pell1QR‘𝐷) ⊆ (Pell14QR‘𝐷))
49 simp2l 1087 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell1QR‘𝐷))
5048, 49sseldd 3604 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ (Pell14QR‘𝐷))
51 simp2r 1088 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell1QR‘𝐷))
5248, 51sseldd 3604 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ (Pell14QR‘𝐷))
53 pell14qrdivcl 37429 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell14QR‘𝐷) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5447, 50, 52, 53syl3anc 1326 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
5547, 52, 32syl2anc 693 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℝ)
5655recnd 10068 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 ∈ ℂ)
5756mulid2d 10058 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) = 𝑏)
58 simp3l 1089 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑏 < 𝑎)
5957, 58eqbrtrd 4675 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (1 · 𝑏) < 𝑎)
60 1red 10055 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 ∈ ℝ)
6147, 50, 21syl2anc 693 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 ∈ ℝ)
62 pell14qrgt0 37423 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑏 ∈ (Pell14QR‘𝐷)) → 0 < 𝑏)
6347, 52, 62syl2anc 693 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 0 < 𝑏)
64 ltmuldiv 10896 . . . . . . . . . . . 12 ((1 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6560, 61, 55, 63, 64syl112anc 1330 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((1 · 𝑏) < 𝑎 ↔ 1 < (𝑎 / 𝑏)))
6659, 65mpbid 222 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 1 < (𝑎 / 𝑏))
67 simp3r 1090 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 𝑎 < (2 · 𝑏))
681a1i 11 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → 2 ∈ ℝ)
69 ltdivmul2 10900 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑏 ∈ ℝ ∧ 0 < 𝑏)) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7061, 68, 55, 63, 69syl112anc 1330 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → ((𝑎 / 𝑏) < 2 ↔ 𝑎 < (2 · 𝑏)))
7167, 70mpbird 247 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (𝑎 / 𝑏) < 2)
72 simprr 796 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) < 2)
73 simpll 790 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 𝐷 ∈ (ℕ ∖ ◻NN))
74 simplr 792 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷))
75 simprl 794 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 1 < (𝑎 / 𝑏))
76 pell14qrgapw 37440 . . . . . . . . . . . . 13 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷) ∧ 1 < (𝑎 / 𝑏)) → 2 < (𝑎 / 𝑏))
7773, 74, 75, 76syl3anc 1326 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → 2 < (𝑎 / 𝑏))
78 pell14qrre 37421 . . . . . . . . . . . . . 14 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) → (𝑎 / 𝑏) ∈ ℝ)
7978adantr 481 . . . . . . . . . . . . 13 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (𝑎 / 𝑏) ∈ ℝ)
80 ltnsym 10135 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (𝑎 / 𝑏) ∈ ℝ) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
811, 79, 80sylancr 695 . . . . . . . . . . . 12 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (2 < (𝑎 / 𝑏) → ¬ (𝑎 / 𝑏) < 2))
8277, 81mpd 15 . . . . . . . . . . 11 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → ¬ (𝑎 / 𝑏) < 2)
8372, 82pm2.21dd 186 . . . . . . . . . 10 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 / 𝑏) ∈ (Pell14QR‘𝐷)) ∧ (1 < (𝑎 / 𝑏) ∧ (𝑎 / 𝑏) < 2)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8447, 54, 66, 71, 83syl22anc 1327 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑎 ∈ (Pell1QR‘𝐷) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ (𝑏 < 𝑎𝑎 < (2 · 𝑏))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
8524, 25, 26, 27, 46, 84syl122anc 1335 . . . . . . . 8 (((((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) ∧ 𝑏 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
86 simpll 790 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝐷 ∈ (ℕ ∖ ◻NN))
8722adantr 481 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → 𝑎 ∈ ℝ)
88 simprl 794 . . . . . . . . 9 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) < 𝑎)
89 pellfundglb 37449 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ ℝ ∧ (PellFund‘𝐷) < 𝑎) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9086, 87, 88, 89syl3anc 1326 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → ∃𝑏 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑏𝑏 < 𝑎))
9185, 90r19.29a 3078 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ ((PellFund‘𝐷) < 𝑎𝑎 < (2 · (PellFund‘𝐷)))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
9291exp32 631 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) < 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
93 simp2 1062 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) = 𝑎)
94 simp1r 1086 . . . . . . . 8 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → 𝑎 ∈ (Pell1QR‘𝐷))
9593, 94eqeltrd 2701 . . . . . . 7 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) ∧ (PellFund‘𝐷) = 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
96953exp 1264 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) = 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9792, 96jaod 395 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) < 𝑎 ∨ (PellFund‘𝐷) = 𝑎) → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9823, 97sylbid 230 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → ((PellFund‘𝐷) ≤ 𝑎 → (𝑎 < (2 · (PellFund‘𝐷)) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))))
9998impd 447 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑎 ∈ (Pell1QR‘𝐷)) → (((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10099rexlimdva 3031 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑎 ∈ (Pell1QR‘𝐷)((PellFund‘𝐷) ≤ 𝑎𝑎 < (2 · (PellFund‘𝐷))) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷)))
10117, 100mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ (Pell1QR‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  cdif 3571  wss 3574   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  NNcsquarenn 37400  Pell1QRcpell1qr 37401  Pell14QRcpell14qr 37403  PellFundcpellfund 37404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-squarenn 37405  df-pell1qr 37406  df-pell14qr 37407  df-pell1234qr 37408  df-pellfund 37409
This theorem is referenced by:  pellfund14  37462  pellfund14b  37463
  Copyright terms: Public domain W3C validator