| Step | Hyp | Ref
| Expression |
| 1 | | idd 24 |
. . . 4
⊢ (𝜑 → ((𝑝 ∘𝑓 − 𝑞) = 0𝑝 →
(𝑝
∘𝑓 − 𝑞) = 0𝑝)) |
| 2 | | plydiveu.q |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑞 ∈ (Poly‘𝑆)) |
| 3 | | plydiv.pl |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 4 | | plydiv.tm |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 · 𝑦) ∈ 𝑆) |
| 5 | | plydiv.rc |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆) |
| 6 | | plydiv.m1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → -1 ∈ 𝑆) |
| 7 | | plydiv.f |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 8 | | plydiv.g |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
| 9 | | plydiv.z |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
| 10 | | plydiv.r |
. . . . . . . . . . . . . . . . 17
⊢ 𝑅 = (𝐹 ∘𝑓 − (𝐺 ∘𝑓
· 𝑞)) |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | plydivlem2 24049 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑞 ∈ (Poly‘𝑆)) → 𝑅 ∈ (Poly‘𝑆)) |
| 12 | 2, 11 | mpdan 702 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑅 ∈ (Poly‘𝑆)) |
| 13 | | plydiveu.p |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑝 ∈ (Poly‘𝑆)) |
| 14 | | plydiveu.t |
. . . . . . . . . . . . . . . . 17
⊢ 𝑇 = (𝐹 ∘𝑓 − (𝐺 ∘𝑓
· 𝑝)) |
| 15 | 3, 4, 5, 6, 7, 8, 9, 14 | plydivlem2 24049 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ (Poly‘𝑆)) → 𝑇 ∈ (Poly‘𝑆)) |
| 16 | 13, 15 | mpdan 702 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑇 ∈ (Poly‘𝑆)) |
| 17 | 12, 16, 3, 4, 6 | plysub 23975 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ∘𝑓 − 𝑇) ∈ (Poly‘𝑆)) |
| 18 | | dgrcl 23989 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∘𝑓
− 𝑇) ∈
(Poly‘𝑆) →
(deg‘(𝑅
∘𝑓 − 𝑇)) ∈
ℕ0) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑅 ∘𝑓
− 𝑇)) ∈
ℕ0) |
| 20 | 19 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑅 ∘𝑓
− 𝑇)) ∈
ℝ) |
| 21 | | dgrcl 23989 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 ∈ (Poly‘𝑆) → (deg‘𝑇) ∈
ℕ0) |
| 22 | 16, 21 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (deg‘𝑇) ∈
ℕ0) |
| 23 | 22 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑇) ∈
ℝ) |
| 24 | | dgrcl 23989 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ (Poly‘𝑆) → (deg‘𝑅) ∈
ℕ0) |
| 25 | 12, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (deg‘𝑅) ∈
ℕ0) |
| 26 | 25 | nn0red 11352 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑅) ∈
ℝ) |
| 27 | 23, 26 | ifcld 4131 |
. . . . . . . . . . . 12
⊢ (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ∈ ℝ) |
| 28 | | dgrcl 23989 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
| 29 | 8, 28 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
| 30 | 29 | nn0red 11352 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) |
| 31 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(deg‘𝑅) =
(deg‘𝑅) |
| 32 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(deg‘𝑇) =
(deg‘𝑇) |
| 33 | 31, 32 | dgrsub 24028 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (deg‘(𝑅 ∘𝑓 − 𝑇)) ≤ if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅))) |
| 34 | 12, 16, 33 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘(𝑅 ∘𝑓
− 𝑇)) ≤
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅))) |
| 35 | | plydiveu.pd |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑇 = 0𝑝 ∨
(deg‘𝑇) <
(deg‘𝐺))) |
| 36 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(coeff‘𝑇) =
(coeff‘𝑇) |
| 37 | 32, 36 | dgrlt 24022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑇 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0)
→ ((𝑇 =
0𝑝 ∨ (deg‘𝑇) < (deg‘𝐺)) ↔ ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0))) |
| 38 | 16, 29, 37 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑇 = 0𝑝 ∨
(deg‘𝑇) <
(deg‘𝐺)) ↔
((deg‘𝑇) ≤
(deg‘𝐺) ∧
((coeff‘𝑇)‘(deg‘𝐺)) = 0))) |
| 39 | 35, 38 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((deg‘𝑇) ≤ (deg‘𝐺) ∧ ((coeff‘𝑇)‘(deg‘𝐺)) = 0)) |
| 40 | 39 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑇) ≤ (deg‘𝐺)) |
| 41 | | plydiveu.qd |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
| 42 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢
(coeff‘𝑅) =
(coeff‘𝑅) |
| 43 | 31, 42 | dgrlt 24022 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ (deg‘𝐺) ∈ ℕ0)
→ ((𝑅 =
0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0))) |
| 44 | 12, 29, 43 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺)) ↔
((deg‘𝑅) ≤
(deg‘𝐺) ∧
((coeff‘𝑅)‘(deg‘𝐺)) = 0))) |
| 45 | 41, 44 | mpbid 222 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((deg‘𝑅) ≤ (deg‘𝐺) ∧ ((coeff‘𝑅)‘(deg‘𝐺)) = 0)) |
| 46 | 45 | simpld 475 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘𝑅) ≤ (deg‘𝐺)) |
| 47 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢
((deg‘𝑇) =
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) →
((deg‘𝑇) ≤
(deg‘𝐺) ↔
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺))) |
| 48 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢
((deg‘𝑅) =
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) →
((deg‘𝑅) ≤
(deg‘𝐺) ↔
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺))) |
| 49 | 47, 48 | ifboth 4124 |
. . . . . . . . . . . . 13
⊢
(((deg‘𝑇) ≤
(deg‘𝐺) ∧
(deg‘𝑅) ≤
(deg‘𝐺)) →
if((deg‘𝑅) ≤
(deg‘𝑇),
(deg‘𝑇),
(deg‘𝑅)) ≤
(deg‘𝐺)) |
| 50 | 40, 46, 49 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → if((deg‘𝑅) ≤ (deg‘𝑇), (deg‘𝑇), (deg‘𝑅)) ≤ (deg‘𝐺)) |
| 51 | 20, 27, 30, 34, 50 | letrd 10194 |
. . . . . . . . . . 11
⊢ (𝜑 → (deg‘(𝑅 ∘𝑓
− 𝑇)) ≤
(deg‘𝐺)) |
| 52 | 51 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘𝑓 − 𝑇)) ≤ (deg‘𝐺)) |
| 53 | 13, 2, 3, 4, 6 | plysub 23975 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑝 ∘𝑓 − 𝑞) ∈ (Poly‘𝑆)) |
| 54 | | dgrcl 23989 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∘𝑓
− 𝑞) ∈
(Poly‘𝑆) →
(deg‘(𝑝
∘𝑓 − 𝑞)) ∈
ℕ0) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑝 ∘𝑓
− 𝑞)) ∈
ℕ0) |
| 56 | | nn0addge1 11339 |
. . . . . . . . . . . . 13
⊢
(((deg‘𝐺)
∈ ℝ ∧ (deg‘(𝑝 ∘𝑓 − 𝑞)) ∈ ℕ0)
→ (deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝑝
∘𝑓 − 𝑞)))) |
| 57 | 30, 55, 56 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ≤ ((deg‘𝐺) + (deg‘(𝑝 ∘𝑓
− 𝑞)))) |
| 58 | 57 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘𝐺) ≤
((deg‘𝐺) +
(deg‘(𝑝
∘𝑓 − 𝑞)))) |
| 59 | | plyf 23954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| 60 | 7, 59 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
| 61 | 60 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
| 62 | 8, 2, 3, 4 | plymul 23974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑞) ∈ (Poly‘𝑆)) |
| 63 | | plyf 23954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘𝑓
· 𝑞) ∈
(Poly‘𝑆) →
(𝐺
∘𝑓 · 𝑞):ℂ⟶ℂ) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑞):ℂ⟶ℂ) |
| 65 | 64 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘𝑓 · 𝑞)‘𝑧) ∈ ℂ) |
| 66 | 8, 13, 3, 4 | plymul 23974 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑝) ∈ (Poly‘𝑆)) |
| 67 | | plyf 23954 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∘𝑓
· 𝑝) ∈
(Poly‘𝑆) →
(𝐺
∘𝑓 · 𝑝):ℂ⟶ℂ) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑝):ℂ⟶ℂ) |
| 69 | 68 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘𝑓 · 𝑝)‘𝑧) ∈ ℂ) |
| 70 | 61, 65, 69 | nnncan1d 10426 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧))) = (((𝐺 ∘𝑓 · 𝑝)‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧))) |
| 71 | 70 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ (((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧)))) = (𝑧 ∈ ℂ ↦ (((𝐺 ∘𝑓 · 𝑝)‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)))) |
| 72 | | cnex 10017 |
. . . . . . . . . . . . . . . . . 18
⊢ ℂ
∈ V |
| 73 | 72 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℂ ∈
V) |
| 74 | 61, 65 | subcld 10392 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)) ∈ ℂ) |
| 75 | 61, 69 | subcld 10392 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧)) ∈ ℂ) |
| 76 | 60 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ (𝐹‘𝑧))) |
| 77 | 64 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑞) = (𝑧 ∈ ℂ ↦ ((𝐺 ∘𝑓 · 𝑞)‘𝑧))) |
| 78 | 73, 61, 65, 76, 77 | offval2 6914 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ∘𝑓 − (𝐺 ∘𝑓
· 𝑞)) = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)))) |
| 79 | 10, 78 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑅 = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)))) |
| 80 | 68 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝐺 ∘𝑓 · 𝑝) = (𝑧 ∈ ℂ ↦ ((𝐺 ∘𝑓 · 𝑝)‘𝑧))) |
| 81 | 73, 61, 69, 76, 80 | offval2 6914 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐹 ∘𝑓 − (𝐺 ∘𝑓
· 𝑝)) = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧)))) |
| 82 | 14, 81 | syl5eq 2668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑇 = (𝑧 ∈ ℂ ↦ ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧)))) |
| 83 | 73, 74, 75, 79, 82 | offval2 6914 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑅 ∘𝑓 − 𝑇) = (𝑧 ∈ ℂ ↦ (((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)) − ((𝐹‘𝑧) − ((𝐺 ∘𝑓 · 𝑝)‘𝑧))))) |
| 84 | 73, 69, 65, 80, 77 | offval2 6914 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐺 ∘𝑓 · 𝑝) ∘𝑓
− (𝐺
∘𝑓 · 𝑞)) = (𝑧 ∈ ℂ ↦ (((𝐺 ∘𝑓 · 𝑝)‘𝑧) − ((𝐺 ∘𝑓 · 𝑞)‘𝑧)))) |
| 85 | 71, 83, 84 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑅 ∘𝑓 − 𝑇) = ((𝐺 ∘𝑓 · 𝑝) ∘𝑓
− (𝐺
∘𝑓 · 𝑞))) |
| 86 | | plyf 23954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
| 87 | 8, 86 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
| 88 | | plyf 23954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ (Poly‘𝑆) → 𝑝:ℂ⟶ℂ) |
| 89 | 13, 88 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑝:ℂ⟶ℂ) |
| 90 | | plyf 23954 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑞 ∈ (Poly‘𝑆) → 𝑞:ℂ⟶ℂ) |
| 91 | 2, 90 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑞:ℂ⟶ℂ) |
| 92 | | subdi 10463 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
| 93 | 92 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑥 · (𝑦 − 𝑧)) = ((𝑥 · 𝑦) − (𝑥 · 𝑧))) |
| 94 | 73, 87, 89, 91, 93 | caofdi 6933 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞)) = ((𝐺 ∘𝑓
· 𝑝)
∘𝑓 − (𝐺 ∘𝑓 · 𝑞))) |
| 95 | 85, 94 | eqtr4d 2659 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑅 ∘𝑓 − 𝑇) = (𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞))) |
| 96 | 95 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (deg‘(𝑅 ∘𝑓
− 𝑇)) =
(deg‘(𝐺
∘𝑓 · (𝑝 ∘𝑓 − 𝑞)))) |
| 97 | 96 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘𝑓 − 𝑇)) = (deg‘(𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞)))) |
| 98 | 8 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ 𝐺 ∈
(Poly‘𝑆)) |
| 99 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ 𝐺 ≠
0𝑝) |
| 100 | 53 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (𝑝
∘𝑓 − 𝑞) ∈ (Poly‘𝑆)) |
| 101 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (𝑝
∘𝑓 − 𝑞) ≠
0𝑝) |
| 102 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(deg‘𝐺) =
(deg‘𝐺) |
| 103 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(deg‘(𝑝
∘𝑓 − 𝑞)) = (deg‘(𝑝 ∘𝑓 − 𝑞)) |
| 104 | 102, 103 | dgrmul 24026 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) ∧ ((𝑝 ∘𝑓
− 𝑞) ∈
(Poly‘𝑆) ∧ (𝑝 ∘𝑓
− 𝑞) ≠
0𝑝)) → (deg‘(𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞))) =
((deg‘𝐺) +
(deg‘(𝑝
∘𝑓 − 𝑞)))) |
| 105 | 98, 99, 100, 101, 104 | syl22anc 1327 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘(𝐺
∘𝑓 · (𝑝 ∘𝑓 − 𝑞))) = ((deg‘𝐺) + (deg‘(𝑝 ∘𝑓
− 𝑞)))) |
| 106 | 97, 105 | eqtrd 2656 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘𝑓 − 𝑇)) = ((deg‘𝐺) + (deg‘(𝑝 ∘𝑓 − 𝑞)))) |
| 107 | 58, 106 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘𝐺) ≤
(deg‘(𝑅
∘𝑓 − 𝑇))) |
| 108 | 20, 30 | letri3d 10179 |
. . . . . . . . . . 11
⊢ (𝜑 → ((deg‘(𝑅 ∘𝑓
− 𝑇)) =
(deg‘𝐺) ↔
((deg‘(𝑅
∘𝑓 − 𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅 ∘𝑓 − 𝑇))))) |
| 109 | 108 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ ((deg‘(𝑅
∘𝑓 − 𝑇)) = (deg‘𝐺) ↔ ((deg‘(𝑅 ∘𝑓 − 𝑇)) ≤ (deg‘𝐺) ∧ (deg‘𝐺) ≤ (deg‘(𝑅 ∘𝑓
− 𝑇))))) |
| 110 | 52, 107, 109 | mpbir2and 957 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (deg‘(𝑅
∘𝑓 − 𝑇)) = (deg‘𝐺)) |
| 111 | 110 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘𝑓 − 𝑇))‘(deg‘(𝑅 ∘𝑓 − 𝑇))) = ((coeff‘(𝑅 ∘𝑓
− 𝑇))‘(deg‘𝐺))) |
| 112 | 42, 36 | coesub 24013 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ (Poly‘𝑆) ∧ 𝑇 ∈ (Poly‘𝑆)) → (coeff‘(𝑅 ∘𝑓 − 𝑇)) = ((coeff‘𝑅) ∘𝑓
− (coeff‘𝑇))) |
| 113 | 12, 16, 112 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (coeff‘(𝑅 ∘𝑓
− 𝑇)) =
((coeff‘𝑅)
∘𝑓 − (coeff‘𝑇))) |
| 114 | 113 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝜑 → ((coeff‘(𝑅 ∘𝑓
− 𝑇))‘(deg‘𝐺)) = (((coeff‘𝑅) ∘𝑓 −
(coeff‘𝑇))‘(deg‘𝐺))) |
| 115 | 42 | coef3 23988 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ (Poly‘𝑆) → (coeff‘𝑅):ℕ0⟶ℂ) |
| 116 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢
((coeff‘𝑅):ℕ0⟶ℂ →
(coeff‘𝑅) Fn
ℕ0) |
| 117 | 12, 115, 116 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘𝑅) Fn
ℕ0) |
| 118 | 36 | coef3 23988 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈ (Poly‘𝑆) → (coeff‘𝑇):ℕ0⟶ℂ) |
| 119 | | ffn 6045 |
. . . . . . . . . . . . . 14
⊢
((coeff‘𝑇):ℕ0⟶ℂ →
(coeff‘𝑇) Fn
ℕ0) |
| 120 | 16, 118, 119 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (coeff‘𝑇) Fn
ℕ0) |
| 121 | | nn0ex 11298 |
. . . . . . . . . . . . . 14
⊢
ℕ0 ∈ V |
| 122 | 121 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ0 ∈
V) |
| 123 | | inidm 3822 |
. . . . . . . . . . . . 13
⊢
(ℕ0 ∩ ℕ0) =
ℕ0 |
| 124 | 45 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘𝑅)‘(deg‘𝐺)) = 0) |
| 125 | 124 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ ((coeff‘𝑅)‘(deg‘𝐺)) = 0) |
| 126 | 39 | simprd 479 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘𝑇)‘(deg‘𝐺)) = 0) |
| 127 | 126 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ ((coeff‘𝑇)‘(deg‘𝐺)) = 0) |
| 128 | 117, 120,
122, 122, 123, 125, 127 | ofval 6906 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (deg‘𝐺) ∈ ℕ0)
→ (((coeff‘𝑅)
∘𝑓 − (coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0)) |
| 129 | 29, 128 | mpdan 702 |
. . . . . . . . . . 11
⊢ (𝜑 → (((coeff‘𝑅) ∘𝑓
− (coeff‘𝑇))‘(deg‘𝐺)) = (0 − 0)) |
| 130 | 114, 129 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝜑 → ((coeff‘(𝑅 ∘𝑓
− 𝑇))‘(deg‘𝐺)) = (0 − 0)) |
| 131 | | 0m0e0 11130 |
. . . . . . . . . 10
⊢ (0
− 0) = 0 |
| 132 | 130, 131 | syl6eq 2672 |
. . . . . . . . 9
⊢ (𝜑 → ((coeff‘(𝑅 ∘𝑓
− 𝑇))‘(deg‘𝐺)) = 0) |
| 133 | 132 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘𝑓 − 𝑇))‘(deg‘𝐺)) = 0) |
| 134 | 111, 133 | eqtrd 2656 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ ((coeff‘(𝑅
∘𝑓 − 𝑇))‘(deg‘(𝑅 ∘𝑓 − 𝑇))) = 0) |
| 135 | | eqid 2622 |
. . . . . . . . . 10
⊢
(deg‘(𝑅
∘𝑓 − 𝑇)) = (deg‘(𝑅 ∘𝑓 − 𝑇)) |
| 136 | | eqid 2622 |
. . . . . . . . . 10
⊢
(coeff‘(𝑅
∘𝑓 − 𝑇)) = (coeff‘(𝑅 ∘𝑓 − 𝑇)) |
| 137 | 135, 136 | dgreq0 24021 |
. . . . . . . . 9
⊢ ((𝑅 ∘𝑓
− 𝑇) ∈
(Poly‘𝑆) →
((𝑅
∘𝑓 − 𝑇) = 0𝑝 ↔
((coeff‘(𝑅
∘𝑓 − 𝑇))‘(deg‘(𝑅 ∘𝑓 − 𝑇))) = 0)) |
| 138 | 17, 137 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((𝑅 ∘𝑓 − 𝑇) = 0𝑝 ↔
((coeff‘(𝑅
∘𝑓 − 𝑇))‘(deg‘(𝑅 ∘𝑓 − 𝑇))) = 0)) |
| 139 | 138 | biimpar 502 |
. . . . . . 7
⊢ ((𝜑 ∧ ((coeff‘(𝑅 ∘𝑓
− 𝑇))‘(deg‘(𝑅 ∘𝑓 − 𝑇))) = 0) → (𝑅 ∘𝑓
− 𝑇) =
0𝑝) |
| 140 | 134, 139 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝)
→ (𝑅
∘𝑓 − 𝑇) = 0𝑝) |
| 141 | 140 | ex 450 |
. . . . 5
⊢ (𝜑 → ((𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝
→ (𝑅
∘𝑓 − 𝑇) = 0𝑝)) |
| 142 | | plymul0or 24036 |
. . . . . . 7
⊢ ((𝐺 ∈ (Poly‘𝑆) ∧ (𝑝 ∘𝑓 − 𝑞) ∈ (Poly‘𝑆)) → ((𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞)) =
0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝 ∘𝑓
− 𝑞) =
0𝑝))) |
| 143 | 8, 53, 142 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝐺 ∘𝑓 · (𝑝 ∘𝑓
− 𝑞)) =
0𝑝 ↔ (𝐺 = 0𝑝 ∨ (𝑝 ∘𝑓
− 𝑞) =
0𝑝))) |
| 144 | 95 | eqeq1d 2624 |
. . . . . 6
⊢ (𝜑 → ((𝑅 ∘𝑓 − 𝑇) = 0𝑝 ↔
(𝐺
∘𝑓 · (𝑝 ∘𝑓 − 𝑞)) =
0𝑝)) |
| 145 | 9 | neneqd 2799 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝐺 = 0𝑝) |
| 146 | | biorf 420 |
. . . . . . 7
⊢ (¬
𝐺 = 0𝑝
→ ((𝑝
∘𝑓 − 𝑞) = 0𝑝 ↔ (𝐺 = 0𝑝 ∨
(𝑝
∘𝑓 − 𝑞) = 0𝑝))) |
| 147 | 145, 146 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((𝑝 ∘𝑓 − 𝑞) = 0𝑝 ↔
(𝐺 = 0𝑝
∨ (𝑝
∘𝑓 − 𝑞) = 0𝑝))) |
| 148 | 143, 144,
147 | 3bitr4d 300 |
. . . . 5
⊢ (𝜑 → ((𝑅 ∘𝑓 − 𝑇) = 0𝑝 ↔
(𝑝
∘𝑓 − 𝑞) = 0𝑝)) |
| 149 | 141, 148 | sylibd 229 |
. . . 4
⊢ (𝜑 → ((𝑝 ∘𝑓 − 𝑞) ≠ 0𝑝
→ (𝑝
∘𝑓 − 𝑞) = 0𝑝)) |
| 150 | 1, 149 | pm2.61dne 2880 |
. . 3
⊢ (𝜑 → (𝑝 ∘𝑓 − 𝑞) =
0𝑝) |
| 151 | | df-0p 23437 |
. . 3
⊢
0𝑝 = (ℂ × {0}) |
| 152 | 150, 151 | syl6eq 2672 |
. 2
⊢ (𝜑 → (𝑝 ∘𝑓 − 𝑞) = (ℂ ×
{0})) |
| 153 | | ofsubeq0 11017 |
. . 3
⊢ ((ℂ
∈ V ∧ 𝑝:ℂ⟶ℂ ∧ 𝑞:ℂ⟶ℂ) →
((𝑝
∘𝑓 − 𝑞) = (ℂ × {0}) ↔ 𝑝 = 𝑞)) |
| 154 | 73, 89, 91, 153 | syl3anc 1326 |
. 2
⊢ (𝜑 → ((𝑝 ∘𝑓 − 𝑞) = (ℂ × {0}) ↔
𝑝 = 𝑞)) |
| 155 | 152, 154 | mpbid 222 |
1
⊢ (𝜑 → 𝑝 = 𝑞) |