MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydiveu Structured version   Visualization version   Unicode version

Theorem plydiveu 24053
Description: Lemma for plydivalg 24054. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
plydiv.tm  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
plydiv.rc  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
plydiv.m1  |-  ( ph  -> 
-u 1  e.  S
)
plydiv.f  |-  ( ph  ->  F  e.  (Poly `  S ) )
plydiv.g  |-  ( ph  ->  G  e.  (Poly `  S ) )
plydiv.z  |-  ( ph  ->  G  =/=  0p )
plydiv.r  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
plydiveu.q  |-  ( ph  ->  q  e.  (Poly `  S ) )
plydiveu.qd  |-  ( ph  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) )
plydiveu.t  |-  T  =  ( F  oF  -  ( G  oF  x.  p )
)
plydiveu.p  |-  ( ph  ->  p  e.  (Poly `  S ) )
plydiveu.pd  |-  ( ph  ->  ( T  =  0p  \/  (deg `  T )  <  (deg `  G ) ) )
Assertion
Ref Expression
plydiveu  |-  ( ph  ->  p  =  q )
Distinct variable groups:    x, y    q, p, x, y, F    ph, x, y    x, T, y    G, p, q, x, y    R, p, x, y    S, p, q, x, y
Allowed substitution hints:    ph( q, p)    R( q)    T( q, p)

Proof of Theorem plydiveu
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 idd 24 . . . 4  |-  ( ph  ->  ( ( p  oF  -  q )  =  0p  -> 
( p  oF  -  q )  =  0p ) )
2 plydiveu.q . . . . . . . . . . . . . . . 16  |-  ( ph  ->  q  e.  (Poly `  S ) )
3 plydiv.pl . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
4 plydiv.tm . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
5 plydiv.rc . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  S  /\  x  =/=  0 ) )  -> 
( 1  /  x
)  e.  S )
6 plydiv.m1 . . . . . . . . . . . . . . . . 17  |-  ( ph  -> 
-u 1  e.  S
)
7 plydiv.f . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F  e.  (Poly `  S ) )
8 plydiv.g . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  e.  (Poly `  S ) )
9 plydiv.z . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G  =/=  0p )
10 plydiv.r . . . . . . . . . . . . . . . . 17  |-  R  =  ( F  oF  -  ( G  oF  x.  q )
)
113, 4, 5, 6, 7, 8, 9, 10plydivlem2 24049 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  q  e.  (Poly `  S ) )  ->  R  e.  (Poly `  S ) )
122, 11mpdan 702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  R  e.  (Poly `  S ) )
13 plydiveu.p . . . . . . . . . . . . . . . 16  |-  ( ph  ->  p  e.  (Poly `  S ) )
14 plydiveu.t . . . . . . . . . . . . . . . . 17  |-  T  =  ( F  oF  -  ( G  oF  x.  p )
)
153, 4, 5, 6, 7, 8, 9, 14plydivlem2 24049 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  p  e.  (Poly `  S ) )  ->  T  e.  (Poly `  S ) )
1613, 15mpdan 702 . . . . . . . . . . . . . . 15  |-  ( ph  ->  T  e.  (Poly `  S ) )
1712, 16, 3, 4, 6plysub 23975 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( R  oF  -  T )  e.  (Poly `  S )
)
18 dgrcl 23989 . . . . . . . . . . . . . 14  |-  ( ( R  oF  -  T )  e.  (Poly `  S )  ->  (deg `  ( R  oF  -  T ) )  e.  NN0 )
1917, 18syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  ( R  oF  -  T
) )  e.  NN0 )
2019nn0red 11352 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  ( R  oF  -  T
) )  e.  RR )
21 dgrcl 23989 . . . . . . . . . . . . . . 15  |-  ( T  e.  (Poly `  S
)  ->  (deg `  T
)  e.  NN0 )
2216, 21syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  (deg `  T )  e.  NN0 )
2322nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  T )  e.  RR )
24 dgrcl 23989 . . . . . . . . . . . . . . 15  |-  ( R  e.  (Poly `  S
)  ->  (deg `  R
)  e.  NN0 )
2512, 24syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  (deg `  R )  e.  NN0 )
2625nn0red 11352 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  R )  e.  RR )
2723, 26ifcld 4131 . . . . . . . . . . . 12  |-  ( ph  ->  if ( (deg `  R )  <_  (deg `  T ) ,  (deg
`  T ) ,  (deg `  R )
)  e.  RR )
28 dgrcl 23989 . . . . . . . . . . . . . 14  |-  ( G  e.  (Poly `  S
)  ->  (deg `  G
)  e.  NN0 )
298, 28syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  G )  e.  NN0 )
3029nn0red 11352 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  e.  RR )
31 eqid 2622 . . . . . . . . . . . . . 14  |-  (deg `  R )  =  (deg
`  R )
32 eqid 2622 . . . . . . . . . . . . . 14  |-  (deg `  T )  =  (deg
`  T )
3331, 32dgrsub 24028 . . . . . . . . . . . . 13  |-  ( ( R  e.  (Poly `  S )  /\  T  e.  (Poly `  S )
)  ->  (deg `  ( R  oF  -  T
) )  <_  if ( (deg `  R )  <_  (deg `  T ) ,  (deg `  T ) ,  (deg `  R )
) )
3412, 16, 33syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  ( R  oF  -  T
) )  <_  if ( (deg `  R )  <_  (deg `  T ) ,  (deg `  T ) ,  (deg `  R )
) )
35 plydiveu.pd . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  =  0p  \/  (deg `  T )  <  (deg `  G ) ) )
36 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (coeff `  T )  =  (coeff `  T )
3732, 36dgrlt 24022 . . . . . . . . . . . . . . . 16  |-  ( ( T  e.  (Poly `  S )  /\  (deg `  G )  e.  NN0 )  ->  ( ( T  =  0p  \/  (deg `  T )  <  (deg `  G )
)  <->  ( (deg `  T )  <_  (deg `  G )  /\  (
(coeff `  T ) `  (deg `  G )
)  =  0 ) ) )
3816, 29, 37syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( T  =  0p  \/  (deg `  T )  <  (deg `  G ) )  <->  ( (deg `  T )  <_  (deg `  G )  /\  (
(coeff `  T ) `  (deg `  G )
)  =  0 ) ) )
3935, 38mpbid 222 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (deg `  T
)  <_  (deg `  G
)  /\  ( (coeff `  T ) `  (deg `  G ) )  =  0 ) )
4039simpld 475 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  T )  <_  (deg `  G )
)
41 plydiveu.qd . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) )
42 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  (coeff `  R )  =  (coeff `  R )
4331, 42dgrlt 24022 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  (Poly `  S )  /\  (deg `  G )  e.  NN0 )  ->  ( ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
)  <->  ( (deg `  R )  <_  (deg `  G )  /\  (
(coeff `  R ) `  (deg `  G )
)  =  0 ) ) )
4412, 29, 43syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( R  =  0p  \/  (deg `  R )  <  (deg `  G ) )  <->  ( (deg `  R )  <_  (deg `  G )  /\  (
(coeff `  R ) `  (deg `  G )
)  =  0 ) ) )
4541, 44mpbid 222 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (deg `  R
)  <_  (deg `  G
)  /\  ( (coeff `  R ) `  (deg `  G ) )  =  0 ) )
4645simpld 475 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  R )  <_  (deg `  G )
)
47 breq1 4656 . . . . . . . . . . . . . 14  |-  ( (deg
`  T )  =  if ( (deg `  R )  <_  (deg `  T ) ,  (deg
`  T ) ,  (deg `  R )
)  ->  ( (deg `  T )  <_  (deg `  G )  <->  if (
(deg `  R )  <_  (deg `  T ) ,  (deg `  T ) ,  (deg `  R )
)  <_  (deg `  G
) ) )
48 breq1 4656 . . . . . . . . . . . . . 14  |-  ( (deg
`  R )  =  if ( (deg `  R )  <_  (deg `  T ) ,  (deg
`  T ) ,  (deg `  R )
)  ->  ( (deg `  R )  <_  (deg `  G )  <->  if (
(deg `  R )  <_  (deg `  T ) ,  (deg `  T ) ,  (deg `  R )
)  <_  (deg `  G
) ) )
4947, 48ifboth 4124 . . . . . . . . . . . . 13  |-  ( ( (deg `  T )  <_  (deg `  G )  /\  (deg `  R )  <_  (deg `  G )
)  ->  if (
(deg `  R )  <_  (deg `  T ) ,  (deg `  T ) ,  (deg `  R )
)  <_  (deg `  G
) )
5040, 46, 49syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  if ( (deg `  R )  <_  (deg `  T ) ,  (deg
`  T ) ,  (deg `  R )
)  <_  (deg `  G
) )
5120, 27, 30, 34, 50letrd 10194 . . . . . . . . . . 11  |-  ( ph  ->  (deg `  ( R  oF  -  T
) )  <_  (deg `  G ) )
5251adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  ( R  oF  -  T
) )  <_  (deg `  G ) )
5313, 2, 3, 4, 6plysub 23975 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( p  oF  -  q )  e.  (Poly `  S )
)
54 dgrcl 23989 . . . . . . . . . . . . . 14  |-  ( ( p  oF  -  q )  e.  (Poly `  S )  ->  (deg `  ( p  oF  -  q ) )  e.  NN0 )
5553, 54syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  ( p  oF  -  q
) )  e.  NN0 )
56 nn0addge1 11339 . . . . . . . . . . . . 13  |-  ( ( (deg `  G )  e.  RR  /\  (deg `  ( p  oF  -  q ) )  e.  NN0 )  -> 
(deg `  G )  <_  ( (deg `  G
)  +  (deg `  ( p  oF  -  q ) ) ) )
5730, 55, 56syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  (deg `  G )  <_  ( (deg `  G
)  +  (deg `  ( p  oF  -  q ) ) ) )
5857adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  G
)  <_  ( (deg `  G )  +  (deg
`  ( p  oF  -  q ) ) ) )
59 plyf 23954 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e.  (Poly `  S
)  ->  F : CC
--> CC )
607, 59syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F : CC --> CC )
6160ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  CC )  ->  ( F `
 z )  e.  CC )
628, 2, 3, 4plymul 23974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  oF  x.  q )  e.  (Poly `  S )
)
63 plyf 23954 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  oF  x.  q )  e.  (Poly `  S )  ->  ( G  oF  x.  q
) : CC --> CC )
6462, 63syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  oF  x.  q ) : CC --> CC )
6564ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G  oF  x.  q ) `  z
)  e.  CC )
668, 13, 3, 4plymul 23974 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  oF  x.  p )  e.  (Poly `  S )
)
67 plyf 23954 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( G  oF  x.  p )  e.  (Poly `  S )  ->  ( G  oF  x.  p
) : CC --> CC )
6866, 67syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  oF  x.  p ) : CC --> CC )
6968ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( G  oF  x.  p ) `  z
)  e.  CC )
7061, 65, 69nnncan1d 10426 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( ( F `  z
)  -  ( ( G  oF  x.  q ) `  z
) )  -  (
( F `  z
)  -  ( ( G  oF  x.  p ) `  z
) ) )  =  ( ( ( G  oF  x.  p
) `  z )  -  ( ( G  oF  x.  q
) `  z )
) )
7170mpteq2dva 4744 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( z  e.  CC  |->  ( ( ( F `
 z )  -  ( ( G  oF  x.  q ) `  z ) )  -  ( ( F `  z )  -  (
( G  oF  x.  p ) `  z ) ) ) )  =  ( z  e.  CC  |->  ( ( ( G  oF  x.  p ) `  z )  -  (
( G  oF  x.  q ) `  z ) ) ) )
72 cnex 10017 . . . . . . . . . . . . . . . . . 18  |-  CC  e.  _V
7372a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  CC  e.  _V )
7461, 65subcld 10392 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( F `  z )  -  ( ( G  oF  x.  q
) `  z )
)  e.  CC )
7561, 69subcld 10392 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  CC )  ->  ( ( F `  z )  -  ( ( G  oF  x.  p
) `  z )
)  e.  CC )
7660feqmptd 6249 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  F  =  ( z  e.  CC  |->  ( F `
 z ) ) )
7764feqmptd 6249 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  oF  x.  q )  =  ( z  e.  CC  |->  ( ( G  oF  x.  q ) `  z ) ) )
7873, 61, 65, 76, 77offval2 6914 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F  oF  -  ( G  oF  x.  q )
)  =  ( z  e.  CC  |->  ( ( F `  z )  -  ( ( G  oF  x.  q
) `  z )
) ) )
7910, 78syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  R  =  ( z  e.  CC  |->  ( ( F `  z )  -  ( ( G  oF  x.  q
) `  z )
) ) )
8068feqmptd 6249 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( G  oF  x.  p )  =  ( z  e.  CC  |->  ( ( G  oF  x.  p ) `  z ) ) )
8173, 61, 69, 76, 80offval2 6914 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( F  oF  -  ( G  oF  x.  p )
)  =  ( z  e.  CC  |->  ( ( F `  z )  -  ( ( G  oF  x.  p
) `  z )
) ) )
8214, 81syl5eq 2668 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  T  =  ( z  e.  CC  |->  ( ( F `  z )  -  ( ( G  oF  x.  p
) `  z )
) ) )
8373, 74, 75, 79, 82offval2 6914 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( R  oF  -  T )  =  ( z  e.  CC  |->  ( ( ( F `
 z )  -  ( ( G  oF  x.  q ) `  z ) )  -  ( ( F `  z )  -  (
( G  oF  x.  p ) `  z ) ) ) ) )
8473, 69, 65, 80, 77offval2 6914 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( G  oF  x.  p )  oF  -  ( G  oF  x.  q
) )  =  ( z  e.  CC  |->  ( ( ( G  oF  x.  p ) `  z )  -  (
( G  oF  x.  q ) `  z ) ) ) )
8571, 83, 843eqtr4d 2666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( R  oF  -  T )  =  ( ( G  oF  x.  p )  oF  -  ( G  oF  x.  q
) ) )
86 plyf 23954 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  (Poly `  S
)  ->  G : CC
--> CC )
878, 86syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : CC --> CC )
88 plyf 23954 . . . . . . . . . . . . . . . . 17  |-  ( p  e.  (Poly `  S
)  ->  p : CC
--> CC )
8913, 88syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  p : CC --> CC )
90 plyf 23954 . . . . . . . . . . . . . . . . 17  |-  ( q  e.  (Poly `  S
)  ->  q : CC
--> CC )
912, 90syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  q : CC --> CC )
92 subdi 10463 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x  x.  ( y  -  z ) )  =  ( ( x  x.  y )  -  ( x  x.  z
) ) )
9392adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( x  x.  (
y  -  z ) )  =  ( ( x  x.  y )  -  ( x  x.  z ) ) )
9473, 87, 89, 91, 93caofdi 6933 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( G  oF  x.  ( p  oF  -  q ) )  =  ( ( G  oF  x.  p )  oF  -  ( G  oF  x.  q )
) )
9585, 94eqtr4d 2659 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( R  oF  -  T )  =  ( G  oF  x.  ( p  oF  -  q ) ) )
9695fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  (deg `  ( R  oF  -  T
) )  =  (deg
`  ( G  oF  x.  ( p  oF  -  q
) ) ) )
9796adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  ( R  oF  -  T
) )  =  (deg
`  ( G  oF  x.  ( p  oF  -  q
) ) ) )
988adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  G  e.  (Poly `  S ) )
999adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  G  =/=  0p )
10053adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( p  oF  -  q
)  e.  (Poly `  S ) )
101 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( p  oF  -  q
)  =/=  0p )
102 eqid 2622 . . . . . . . . . . . . . 14  |-  (deg `  G )  =  (deg
`  G )
103 eqid 2622 . . . . . . . . . . . . . 14  |-  (deg `  ( p  oF  -  q ) )  =  (deg `  (
p  oF  -  q ) )
104102, 103dgrmul 24026 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  (Poly `  S )  /\  G  =/=  0p )  /\  ( ( p  oF  -  q )  e.  (Poly `  S
)  /\  ( p  oF  -  q
)  =/=  0p ) )  ->  (deg `  ( G  oF  x.  ( p  oF  -  q ) ) )  =  ( (deg `  G )  +  (deg `  ( p  oF  -  q
) ) ) )
10598, 99, 100, 101, 104syl22anc 1327 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  ( G  oF  x.  (
p  oF  -  q ) ) )  =  ( (deg `  G )  +  (deg
`  ( p  oF  -  q ) ) ) )
10697, 105eqtrd 2656 . . . . . . . . . . 11  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  ( R  oF  -  T
) )  =  ( (deg `  G )  +  (deg `  ( p  oF  -  q
) ) ) )
10758, 106breqtrrd 4681 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  G
)  <_  (deg `  ( R  oF  -  T
) ) )
10820, 30letri3d 10179 . . . . . . . . . . 11  |-  ( ph  ->  ( (deg `  ( R  oF  -  T
) )  =  (deg
`  G )  <->  ( (deg `  ( R  oF  -  T ) )  <_  (deg `  G
)  /\  (deg `  G
)  <_  (deg `  ( R  oF  -  T
) ) ) ) )
109108adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( (deg `  ( R  oF  -  T ) )  =  (deg `  G
)  <->  ( (deg `  ( R  oF  -  T ) )  <_ 
(deg `  G )  /\  (deg `  G )  <_  (deg `  ( R  oF  -  T
) ) ) ) )
11052, 107, 109mpbir2and 957 . . . . . . . . 9  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  (deg `  ( R  oF  -  T
) )  =  (deg
`  G ) )
111110fveq2d 6195 . . . . . . . 8  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  ( R  oF  -  T
) ) )  =  ( (coeff `  ( R  oF  -  T
) ) `  (deg `  G ) ) )
11242, 36coesub 24013 . . . . . . . . . . . . 13  |-  ( ( R  e.  (Poly `  S )  /\  T  e.  (Poly `  S )
)  ->  (coeff `  ( R  oF  -  T
) )  =  ( (coeff `  R )  oF  -  (coeff `  T ) ) )
11312, 16, 112syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  (coeff `  ( R  oF  -  T
) )  =  ( (coeff `  R )  oF  -  (coeff `  T ) ) )
114113fveq1d 6193 . . . . . . . . . . 11  |-  ( ph  ->  ( (coeff `  ( R  oF  -  T
) ) `  (deg `  G ) )  =  ( ( (coeff `  R )  oF  -  (coeff `  T
) ) `  (deg `  G ) ) )
11542coef3 23988 . . . . . . . . . . . . . 14  |-  ( R  e.  (Poly `  S
)  ->  (coeff `  R
) : NN0 --> CC )
116 ffn 6045 . . . . . . . . . . . . . 14  |-  ( (coeff `  R ) : NN0 --> CC 
->  (coeff `  R )  Fn  NN0 )
11712, 115, 1163syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  (coeff `  R )  Fn  NN0 )
11836coef3 23988 . . . . . . . . . . . . . 14  |-  ( T  e.  (Poly `  S
)  ->  (coeff `  T
) : NN0 --> CC )
119 ffn 6045 . . . . . . . . . . . . . 14  |-  ( (coeff `  T ) : NN0 --> CC 
->  (coeff `  T )  Fn  NN0 )
12016, 118, 1193syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  (coeff `  T )  Fn  NN0 )
121 nn0ex 11298 . . . . . . . . . . . . . 14  |-  NN0  e.  _V
122121a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  NN0  e.  _V )
123 inidm 3822 . . . . . . . . . . . . 13  |-  ( NN0 
i^i  NN0 )  =  NN0
12445simprd 479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (coeff `  R
) `  (deg `  G
) )  =  0 )
125124adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  (deg `  G
)  e.  NN0 )  ->  ( (coeff `  R
) `  (deg `  G
) )  =  0 )
12639simprd 479 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( (coeff `  T
) `  (deg `  G
) )  =  0 )
127126adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  (deg `  G
)  e.  NN0 )  ->  ( (coeff `  T
) `  (deg `  G
) )  =  0 )
128117, 120, 122, 122, 123, 125, 127ofval 6906 . . . . . . . . . . . 12  |-  ( (
ph  /\  (deg `  G
)  e.  NN0 )  ->  ( ( (coeff `  R )  oF  -  (coeff `  T
) ) `  (deg `  G ) )  =  ( 0  -  0 ) )
12929, 128mpdan 702 . . . . . . . . . . 11  |-  ( ph  ->  ( ( (coeff `  R )  oF  -  (coeff `  T
) ) `  (deg `  G ) )  =  ( 0  -  0 ) )
130114, 129eqtrd 2656 . . . . . . . . . 10  |-  ( ph  ->  ( (coeff `  ( R  oF  -  T
) ) `  (deg `  G ) )  =  ( 0  -  0 ) )
131 0m0e0 11130 . . . . . . . . . 10  |-  ( 0  -  0 )  =  0
132130, 131syl6eq 2672 . . . . . . . . 9  |-  ( ph  ->  ( (coeff `  ( R  oF  -  T
) ) `  (deg `  G ) )  =  0 )
133132adantr 481 . . . . . . . 8  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  G
) )  =  0 )
134111, 133eqtrd 2656 . . . . . . 7  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  ( R  oF  -  T
) ) )  =  0 )
135 eqid 2622 . . . . . . . . . 10  |-  (deg `  ( R  oF  -  T ) )  =  (deg `  ( R  oF  -  T
) )
136 eqid 2622 . . . . . . . . . 10  |-  (coeff `  ( R  oF  -  T ) )  =  (coeff `  ( R  oF  -  T
) )
137135, 136dgreq0 24021 . . . . . . . . 9  |-  ( ( R  oF  -  T )  e.  (Poly `  S )  ->  (
( R  oF  -  T )  =  0p  <->  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  ( R  oF  -  T
) ) )  =  0 ) )
13817, 137syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( R  oF  -  T )  =  0p  <->  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  ( R  oF  -  T
) ) )  =  0 ) )
139138biimpar 502 . . . . . . 7  |-  ( (
ph  /\  ( (coeff `  ( R  oF  -  T ) ) `
 (deg `  ( R  oF  -  T
) ) )  =  0 )  ->  ( R  oF  -  T
)  =  0p )
140134, 139syldan 487 . . . . . 6  |-  ( (
ph  /\  ( p  oF  -  q
)  =/=  0p )  ->  ( R  oF  -  T
)  =  0p )
141140ex 450 . . . . 5  |-  ( ph  ->  ( ( p  oF  -  q )  =/=  0p  -> 
( R  oF  -  T )  =  0p ) )
142 plymul0or 24036 . . . . . . 7  |-  ( ( G  e.  (Poly `  S )  /\  (
p  oF  -  q )  e.  (Poly `  S ) )  -> 
( ( G  oF  x.  ( p  oF  -  q
) )  =  0p  <->  ( G  =  0p  \/  (
p  oF  -  q )  =  0p ) ) )
1438, 53, 142syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( G  oF  x.  ( p  oF  -  q
) )  =  0p  <->  ( G  =  0p  \/  (
p  oF  -  q )  =  0p ) ) )
14495eqeq1d 2624 . . . . . 6  |-  ( ph  ->  ( ( R  oF  -  T )  =  0p  <->  ( G  oF  x.  (
p  oF  -  q ) )  =  0p ) )
1459neneqd 2799 . . . . . . 7  |-  ( ph  ->  -.  G  =  0p )
146 biorf 420 . . . . . . 7  |-  ( -.  G  =  0p  ->  ( ( p  oF  -  q
)  =  0p  <-> 
( G  =  0p  \/  ( p  oF  -  q
)  =  0p ) ) )
147145, 146syl 17 . . . . . 6  |-  ( ph  ->  ( ( p  oF  -  q )  =  0p  <->  ( G  =  0p  \/  ( p  oF  -  q )  =  0p ) ) )
148143, 144, 1473bitr4d 300 . . . . 5  |-  ( ph  ->  ( ( R  oF  -  T )  =  0p  <->  ( p  oF  -  q
)  =  0p ) )
149141, 148sylibd 229 . . . 4  |-  ( ph  ->  ( ( p  oF  -  q )  =/=  0p  -> 
( p  oF  -  q )  =  0p ) )
1501, 149pm2.61dne 2880 . . 3  |-  ( ph  ->  ( p  oF  -  q )  =  0p )
151 df-0p 23437 . . 3  |-  0p  =  ( CC  X.  { 0 } )
152150, 151syl6eq 2672 . 2  |-  ( ph  ->  ( p  oF  -  q )  =  ( CC  X.  {
0 } ) )
153 ofsubeq0 11017 . . 3  |-  ( ( CC  e.  _V  /\  p : CC --> CC  /\  q : CC --> CC )  ->  ( ( p  oF  -  q
)  =  ( CC 
X.  { 0 } )  <->  p  =  q
) )
15473, 89, 91, 153syl3anc 1326 . 2  |-  ( ph  ->  ( ( p  oF  -  q )  =  ( CC  X.  { 0 } )  <-> 
p  =  q ) )
155152, 154mpbid 222 1  |-  ( ph  ->  p  =  q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267    / cdiv 10684   NN0cn0 11292   0pc0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-0p 23437  df-ply 23944  df-coe 23946  df-dgr 23947
This theorem is referenced by:  plydivalg  24054
  Copyright terms: Public domain W3C validator