Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodfzo03 Structured version   Visualization version   GIF version

Theorem prodfzo03 30681
Description: A product of three factors, indexed starting with zero. (Contributed by Thierry Arnoux, 14-Dec-2021.)
Hypotheses
Ref Expression
prodfzo03.1 (𝑘 = 0 → 𝐷 = 𝐴)
prodfzo03.2 (𝑘 = 1 → 𝐷 = 𝐵)
prodfzo03.3 (𝑘 = 2 → 𝐷 = 𝐶)
prodfzo03.a ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
prodfzo03 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodfzo03
StepHypRef Expression
1 fzodisjsn 12505 . . . . 5 ((0..^2) ∩ {2}) = ∅
21a1i 11 . . . 4 (𝜑 → ((0..^2) ∩ {2}) = ∅)
3 2p1e3 11151 . . . . . . 7 (2 + 1) = 3
43oveq2i 6661 . . . . . 6 (0..^(2 + 1)) = (0..^3)
5 2eluzge0 11733 . . . . . . 7 2 ∈ (ℤ‘0)
6 fzosplitsn 12576 . . . . . . 7 (2 ∈ (ℤ‘0) → (0..^(2 + 1)) = ((0..^2) ∪ {2}))
75, 6ax-mp 5 . . . . . 6 (0..^(2 + 1)) = ((0..^2) ∪ {2})
84, 7eqtr3i 2646 . . . . 5 (0..^3) = ((0..^2) ∪ {2})
98a1i 11 . . . 4 (𝜑 → (0..^3) = ((0..^2) ∪ {2}))
10 fzofi 12773 . . . . 5 (0..^3) ∈ Fin
1110a1i 11 . . . 4 (𝜑 → (0..^3) ∈ Fin)
12 prodfzo03.a . . . 4 ((𝜑𝑘 ∈ (0..^3)) → 𝐷 ∈ ℂ)
132, 9, 11, 12fprodsplit 14696 . . 3 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷))
14 0ne1 11088 . . . . . 6 0 ≠ 1
15 disjsn2 4247 . . . . . 6 (0 ≠ 1 → ({0} ∩ {1}) = ∅)
1614, 15mp1i 13 . . . . 5 (𝜑 → ({0} ∩ {1}) = ∅)
17 fzo0to2pr 12553 . . . . . . 7 (0..^2) = {0, 1}
18 df-pr 4180 . . . . . . 7 {0, 1} = ({0} ∪ {1})
1917, 18eqtri 2644 . . . . . 6 (0..^2) = ({0} ∪ {1})
2019a1i 11 . . . . 5 (𝜑 → (0..^2) = ({0} ∪ {1}))
21 fzofi 12773 . . . . . 6 (0..^2) ∈ Fin
2221a1i 11 . . . . 5 (𝜑 → (0..^2) ∈ Fin)
23 2z 11409 . . . . . . . . 9 2 ∈ ℤ
24 3z 11410 . . . . . . . . 9 3 ∈ ℤ
25 2re 11090 . . . . . . . . . 10 2 ∈ ℝ
26 3re 11094 . . . . . . . . . 10 3 ∈ ℝ
27 2lt3 11195 . . . . . . . . . 10 2 < 3
2825, 26, 27ltleii 10160 . . . . . . . . 9 2 ≤ 3
29 eluz2 11693 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 2 ≤ 3))
3023, 24, 28, 29mpbir3an 1244 . . . . . . . 8 3 ∈ (ℤ‘2)
31 fzoss2 12496 . . . . . . . 8 (3 ∈ (ℤ‘2) → (0..^2) ⊆ (0..^3))
3230, 31ax-mp 5 . . . . . . 7 (0..^2) ⊆ (0..^3)
3332sseli 3599 . . . . . 6 (𝑘 ∈ (0..^2) → 𝑘 ∈ (0..^3))
3433, 12sylan2 491 . . . . 5 ((𝜑𝑘 ∈ (0..^2)) → 𝐷 ∈ ℂ)
3516, 20, 22, 34fprodsplit 14696 . . . 4 (𝜑 → ∏𝑘 ∈ (0..^2)𝐷 = (∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷))
3635oveq1d 6665 . . 3 (𝜑 → (∏𝑘 ∈ (0..^2)𝐷 · ∏𝑘 ∈ {2}𝐷) = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
3713, 36eqtrd 2656 . 2 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷))
38 snfi 8038 . . . . 5 {0} ∈ Fin
3938a1i 11 . . . 4 (𝜑 → {0} ∈ Fin)
40 velsn 4193 . . . . 5 (𝑘 ∈ {0} ↔ 𝑘 = 0)
41 prodfzo03.1 . . . . . . 7 (𝑘 = 0 → 𝐷 = 𝐴)
4241adantl 482 . . . . . 6 ((𝜑𝑘 = 0) → 𝐷 = 𝐴)
43 simpr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 = 𝐴)
4412adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐷 ∈ ℂ)
4543, 44eqeltrrd 2702 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐴) → 𝐴 ∈ ℂ)
46 c0ex 10034 . . . . . . . . . . . 12 0 ∈ V
4746tpid1 4303 . . . . . . . . . . 11 0 ∈ {0, 1, 2}
48 fzo0to3tp 12554 . . . . . . . . . . 11 (0..^3) = {0, 1, 2}
4947, 48eleqtrri 2700 . . . . . . . . . 10 0 ∈ (0..^3)
50 eqid 2622 . . . . . . . . . 10 𝐴 = 𝐴
5141eqeq1d 2624 . . . . . . . . . . 11 (𝑘 = 0 → (𝐷 = 𝐴𝐴 = 𝐴))
5251rspcev 3309 . . . . . . . . . 10 ((0 ∈ (0..^3) ∧ 𝐴 = 𝐴) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5349, 50, 52mp2an 708 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐴
5453a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐴)
5545, 54r19.29a 3078 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
5655adantr 481 . . . . . 6 ((𝜑𝑘 = 0) → 𝐴 ∈ ℂ)
5742, 56eqeltrd 2701 . . . . 5 ((𝜑𝑘 = 0) → 𝐷 ∈ ℂ)
5840, 57sylan2b 492 . . . 4 ((𝜑𝑘 ∈ {0}) → 𝐷 ∈ ℂ)
5939, 58fprodcl 14682 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 ∈ ℂ)
60 snfi 8038 . . . . 5 {1} ∈ Fin
6160a1i 11 . . . 4 (𝜑 → {1} ∈ Fin)
62 velsn 4193 . . . . 5 (𝑘 ∈ {1} ↔ 𝑘 = 1)
63 prodfzo03.2 . . . . . . 7 (𝑘 = 1 → 𝐷 = 𝐵)
6463adantl 482 . . . . . 6 ((𝜑𝑘 = 1) → 𝐷 = 𝐵)
65 simpr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 = 𝐵)
6612adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐷 ∈ ℂ)
6765, 66eqeltrrd 2702 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐵) → 𝐵 ∈ ℂ)
68 1ex 10035 . . . . . . . . . . . 12 1 ∈ V
6968tpid2 4304 . . . . . . . . . . 11 1 ∈ {0, 1, 2}
7069, 48eleqtrri 2700 . . . . . . . . . 10 1 ∈ (0..^3)
71 eqid 2622 . . . . . . . . . 10 𝐵 = 𝐵
7263eqeq1d 2624 . . . . . . . . . . 11 (𝑘 = 1 → (𝐷 = 𝐵𝐵 = 𝐵))
7372rspcev 3309 . . . . . . . . . 10 ((1 ∈ (0..^3) ∧ 𝐵 = 𝐵) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7470, 71, 73mp2an 708 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐵
7574a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐵)
7667, 75r19.29a 3078 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
7776adantr 481 . . . . . 6 ((𝜑𝑘 = 1) → 𝐵 ∈ ℂ)
7864, 77eqeltrd 2701 . . . . 5 ((𝜑𝑘 = 1) → 𝐷 ∈ ℂ)
7962, 78sylan2b 492 . . . 4 ((𝜑𝑘 ∈ {1}) → 𝐷 ∈ ℂ)
8061, 79fprodcl 14682 . . 3 (𝜑 → ∏𝑘 ∈ {1}𝐷 ∈ ℂ)
81 snfi 8038 . . . . 5 {2} ∈ Fin
8281a1i 11 . . . 4 (𝜑 → {2} ∈ Fin)
83 velsn 4193 . . . . 5 (𝑘 ∈ {2} ↔ 𝑘 = 2)
84 prodfzo03.3 . . . . . . 7 (𝑘 = 2 → 𝐷 = 𝐶)
8584adantl 482 . . . . . 6 ((𝜑𝑘 = 2) → 𝐷 = 𝐶)
86 simpr 477 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 = 𝐶)
8712adantr 481 . . . . . . . . 9 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐷 ∈ ℂ)
8886, 87eqeltrrd 2702 . . . . . . . 8 (((𝜑𝑘 ∈ (0..^3)) ∧ 𝐷 = 𝐶) → 𝐶 ∈ ℂ)
89 2ex 11092 . . . . . . . . . . . 12 2 ∈ V
9089tpid3 4307 . . . . . . . . . . 11 2 ∈ {0, 1, 2}
9190, 48eleqtrri 2700 . . . . . . . . . 10 2 ∈ (0..^3)
92 eqid 2622 . . . . . . . . . 10 𝐶 = 𝐶
9384eqeq1d 2624 . . . . . . . . . . 11 (𝑘 = 2 → (𝐷 = 𝐶𝐶 = 𝐶))
9493rspcev 3309 . . . . . . . . . 10 ((2 ∈ (0..^3) ∧ 𝐶 = 𝐶) → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9591, 92, 94mp2an 708 . . . . . . . . 9 𝑘 ∈ (0..^3)𝐷 = 𝐶
9695a1i 11 . . . . . . . 8 (𝜑 → ∃𝑘 ∈ (0..^3)𝐷 = 𝐶)
9788, 96r19.29a 3078 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
9897adantr 481 . . . . . 6 ((𝜑𝑘 = 2) → 𝐶 ∈ ℂ)
9985, 98eqeltrd 2701 . . . . 5 ((𝜑𝑘 = 2) → 𝐷 ∈ ℂ)
10083, 99sylan2b 492 . . . 4 ((𝜑𝑘 ∈ {2}) → 𝐷 ∈ ℂ)
10182, 100fprodcl 14682 . . 3 (𝜑 → ∏𝑘 ∈ {2}𝐷 ∈ ℂ)
10259, 80, 101mulassd 10063 . 2 (𝜑 → ((∏𝑘 ∈ {0}𝐷 · ∏𝑘 ∈ {1}𝐷) · ∏𝑘 ∈ {2}𝐷) = (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)))
103 0nn0 11307 . . . . 5 0 ∈ ℕ0
104103a1i 11 . . . 4 (𝜑 → 0 ∈ ℕ0)
10541prodsn 14692 . . . 4 ((0 ∈ ℕ0𝐴 ∈ ℂ) → ∏𝑘 ∈ {0}𝐷 = 𝐴)
106104, 55, 105syl2anc 693 . . 3 (𝜑 → ∏𝑘 ∈ {0}𝐷 = 𝐴)
107 1nn0 11308 . . . . . 6 1 ∈ ℕ0
108107a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
10963prodsn 14692 . . . . 5 ((1 ∈ ℕ0𝐵 ∈ ℂ) → ∏𝑘 ∈ {1}𝐷 = 𝐵)
110108, 76, 109syl2anc 693 . . . 4 (𝜑 → ∏𝑘 ∈ {1}𝐷 = 𝐵)
111 2nn0 11309 . . . . . 6 2 ∈ ℕ0
112111a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
11384prodsn 14692 . . . . 5 ((2 ∈ ℕ0𝐶 ∈ ℂ) → ∏𝑘 ∈ {2}𝐷 = 𝐶)
114112, 97, 113syl2anc 693 . . . 4 (𝜑 → ∏𝑘 ∈ {2}𝐷 = 𝐶)
115110, 114oveq12d 6668 . . 3 (𝜑 → (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷) = (𝐵 · 𝐶))
116106, 115oveq12d 6668 . 2 (𝜑 → (∏𝑘 ∈ {0}𝐷 · (∏𝑘 ∈ {1}𝐷 · ∏𝑘 ∈ {2}𝐷)) = (𝐴 · (𝐵 · 𝐶)))
11737, 102, 1163eqtrd 2660 1 (𝜑 → ∏𝑘 ∈ (0..^3)𝐷 = (𝐴 · (𝐵 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  {cpr 4179  {ctp 4181   class class class wbr 4653  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  2c2 11070  3c3 11071  0cn0 11292  cz 11377  cuz 11687  ..^cfzo 12465  cprod 14635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636
This theorem is referenced by:  circlevma  30720  circlemethhgt  30721
  Copyright terms: Public domain W3C validator