MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   GIF version

Theorem psercnlem1 24179
Description: Lemma for psercn 24180. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
psercnlem1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
2 psercn.s . . . . . . . . . . 11 𝑆 = (abs “ (0[,)𝑅))
3 cnvimass 5485 . . . . . . . . . . . 12 (abs “ (0[,)𝑅)) ⊆ dom abs
4 absf 14077 . . . . . . . . . . . . 13 abs:ℂ⟶ℝ
54fdmi 6052 . . . . . . . . . . . 12 dom abs = ℂ
63, 5sseqtri 3637 . . . . . . . . . . 11 (abs “ (0[,)𝑅)) ⊆ ℂ
72, 6eqsstri 3635 . . . . . . . . . 10 𝑆 ⊆ ℂ
87a1i 11 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
98sselda 3603 . . . . . . . 8 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
109abscld 14175 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
11 readdcl 10019 . . . . . . 7 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1210, 11sylan 488 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 𝑅) ∈ ℝ)
1312rehalfcld 11279 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) ∈ ℝ)
14 peano2re 10209 . . . . . . 7 ((abs‘𝑎) ∈ ℝ → ((abs‘𝑎) + 1) ∈ ℝ)
1510, 14syl 17 . . . . . 6 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ)
1615adantr 481 . . . . 5 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) ∈ ℝ)
1713, 16ifclda 4120 . . . 4 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) ∈ ℝ)
181, 17syl5eqel 2705 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
19 0re 10040 . . . . 5 0 ∈ ℝ
2019a1i 11 . . . 4 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
219absge0d 14183 . . . 4 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
22 breq2 4657 . . . . . 6 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
23 breq2 4657 . . . . . 6 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((abs‘𝑎) < ((abs‘𝑎) + 1) ↔ (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))))
24 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑎𝑆) → 𝑎𝑆)
2524, 2syl6eleq 2711 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑎 ∈ (abs “ (0[,)𝑅)))
26 ffn 6045 . . . . . . . . . . . . 13 (abs:ℂ⟶ℝ → abs Fn ℂ)
27 elpreima 6337 . . . . . . . . . . . . 13 (abs Fn ℂ → (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅))))
284, 26, 27mp2b 10 . . . . . . . . . . . 12 (𝑎 ∈ (abs “ (0[,)𝑅)) ↔ (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
2925, 28sylib 208 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → (𝑎 ∈ ℂ ∧ (abs‘𝑎) ∈ (0[,)𝑅)))
3029simprd 479 . . . . . . . . . 10 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ (0[,)𝑅))
31 iccssxr 12256 . . . . . . . . . . . 12 (0[,]+∞) ⊆ ℝ*
32 pserf.g . . . . . . . . . . . . . 14 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
33 pserf.a . . . . . . . . . . . . . 14 (𝜑𝐴:ℕ0⟶ℂ)
34 pserf.r . . . . . . . . . . . . . 14 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
3532, 33, 34radcnvcl 24171 . . . . . . . . . . . . 13 (𝜑𝑅 ∈ (0[,]+∞))
3635adantr 481 . . . . . . . . . . . 12 ((𝜑𝑎𝑆) → 𝑅 ∈ (0[,]+∞))
3731, 36sseldi 3601 . . . . . . . . . . 11 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
38 elico2 12237 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝑅 ∈ ℝ*) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
3919, 37, 38sylancr 695 . . . . . . . . . 10 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ (0[,)𝑅) ↔ ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅)))
4030, 39mpbid 222 . . . . . . . . 9 ((𝜑𝑎𝑆) → ((abs‘𝑎) ∈ ℝ ∧ 0 ≤ (abs‘𝑎) ∧ (abs‘𝑎) < 𝑅))
4140simp3d 1075 . . . . . . . 8 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑅)
4241adantr 481 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < 𝑅)
43 avglt1 11270 . . . . . . . 8 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4410, 43sylan 488 . . . . . . 7 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2)))
4542, 44mpbid 222 . . . . . 6 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (abs‘𝑎) < (((abs‘𝑎) + 𝑅) / 2))
4610ltp1d 10954 . . . . . . 7 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4746adantr 481 . . . . . 6 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → (abs‘𝑎) < ((abs‘𝑎) + 1))
4822, 23, 45, 47ifbothda 4123 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)))
4948, 1syl6breqr 4695 . . . 4 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
5020, 10, 18, 21, 49lelttrd 10195 . . 3 ((𝜑𝑎𝑆) → 0 < 𝑀)
5118, 50elrpd 11869 . 2 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
52 breq1 4656 . . . 4 ((((abs‘𝑎) + 𝑅) / 2) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → ((((abs‘𝑎) + 𝑅) / 2) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
53 breq1 4656 . . . 4 (((abs‘𝑎) + 1) = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) → (((abs‘𝑎) + 1) < 𝑅 ↔ if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅))
54 avglt2 11271 . . . . . 6 (((abs‘𝑎) ∈ ℝ ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5510, 54sylan 488 . . . . 5 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → ((abs‘𝑎) < 𝑅 ↔ (((abs‘𝑎) + 𝑅) / 2) < 𝑅))
5642, 55mpbid 222 . . . 4 (((𝜑𝑎𝑆) ∧ 𝑅 ∈ ℝ) → (((abs‘𝑎) + 𝑅) / 2) < 𝑅)
5715rexrd 10089 . . . . . . . 8 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 1) ∈ ℝ*)
58 xrlenlt 10103 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ*) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
5937, 57, 58syl2anc 693 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) ↔ ¬ ((abs‘𝑎) + 1) < 𝑅))
60 0xr 10086 . . . . . . . . . . . . 13 0 ∈ ℝ*
61 pnfxr 10092 . . . . . . . . . . . . 13 +∞ ∈ ℝ*
62 elicc1 12219 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
6360, 61, 62mp2an 708 . . . . . . . . . . . 12 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6435, 63sylib 208 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
6564simp2d 1074 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝑅)
6665adantr 481 . . . . . . . . 9 ((𝜑𝑎𝑆) → 0 ≤ 𝑅)
67 ge0gtmnf 12003 . . . . . . . . 9 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
6837, 66, 67syl2anc 693 . . . . . . . 8 ((𝜑𝑎𝑆) → -∞ < 𝑅)
69 xrre 12000 . . . . . . . . 9 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ ((abs‘𝑎) + 1))) → 𝑅 ∈ ℝ)
7069expr 643 . . . . . . . 8 (((𝑅 ∈ ℝ* ∧ ((abs‘𝑎) + 1) ∈ ℝ) ∧ -∞ < 𝑅) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7137, 15, 68, 70syl21anc 1325 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑅 ≤ ((abs‘𝑎) + 1) → 𝑅 ∈ ℝ))
7259, 71sylbird 250 . . . . . 6 ((𝜑𝑎𝑆) → (¬ ((abs‘𝑎) + 1) < 𝑅𝑅 ∈ ℝ))
7372con1d 139 . . . . 5 ((𝜑𝑎𝑆) → (¬ 𝑅 ∈ ℝ → ((abs‘𝑎) + 1) < 𝑅))
7473imp 445 . . . 4 (((𝜑𝑎𝑆) ∧ ¬ 𝑅 ∈ ℝ) → ((abs‘𝑎) + 1) < 𝑅)
7552, 53, 56, 74ifbothda 4123 . . 3 ((𝜑𝑎𝑆) → if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) < 𝑅)
761, 75syl5eqbr 4688 . 2 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
7751, 49, 763jca 1242 1 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075   / cdiv 10684  2c2 11070  0cn0 11292  +crp 11832  [,)cico 12177  [,]cicc 12178  seqcseq 12801  cexp 12860  abscabs 13974  cli 14215  Σcsu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  psercn  24180  pserdvlem1  24181  pserdvlem2  24182  pserdv  24183
  Copyright terms: Public domain W3C validator