MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psercnlem1 Structured version   Visualization version   Unicode version

Theorem psercnlem1 24179
Description: Lemma for psercn 24180. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
pserf.g  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
pserf.f  |-  F  =  ( y  e.  S  |-> 
sum_ j  e.  NN0  ( ( G `  y ) `  j
) )
pserf.a  |-  ( ph  ->  A : NN0 --> CC )
pserf.r  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
psercn.s  |-  S  =  ( `' abs " (
0 [,) R ) )
psercn.m  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
Assertion
Ref Expression
psercnlem1  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
Distinct variable groups:    j, a, n, r, x, y, A   
j, M, y    j, G, r, y    S, a, j, y    F, a    ph, a, j, y
Allowed substitution hints:    ph( x, n, r)    R( x, y, j, n, r, a)    S( x, n, r)    F( x, y, j, n, r)    G( x, n, a)    M( x, n, r, a)

Proof of Theorem psercnlem1
StepHypRef Expression
1 psercn.m . . . 4  |-  M  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )
2 psercn.s . . . . . . . . . . 11  |-  S  =  ( `' abs " (
0 [,) R ) )
3 cnvimass 5485 . . . . . . . . . . . 12  |-  ( `' abs " ( 0 [,) R ) ) 
C_  dom  abs
4 absf 14077 . . . . . . . . . . . . 13  |-  abs : CC
--> RR
54fdmi 6052 . . . . . . . . . . . 12  |-  dom  abs  =  CC
63, 5sseqtri 3637 . . . . . . . . . . 11  |-  ( `' abs " ( 0 [,) R ) ) 
C_  CC
72, 6eqsstri 3635 . . . . . . . . . 10  |-  S  C_  CC
87a1i 11 . . . . . . . . 9  |-  ( ph  ->  S  C_  CC )
98sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  CC )
109abscld 14175 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  RR )
11 readdcl 10019 . . . . . . 7  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  +  R )  e.  RR )
1210, 11sylan 488 . . . . . 6  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  +  R )  e.  RR )
1312rehalfcld 11279 . . . . 5  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( ( abs `  a
)  +  R )  /  2 )  e.  RR )
14 peano2re 10209 . . . . . . 7  |-  ( ( abs `  a )  e.  RR  ->  (
( abs `  a
)  +  1 )  e.  RR )
1510, 14syl 17 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  1 )  e.  RR )
1615adantr 481 . . . . 5  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( ( abs `  a
)  +  1 )  e.  RR )
1713, 16ifclda 4120 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  if ( R  e.  RR ,  ( ( ( abs `  a )  +  R )  / 
2 ) ,  ( ( abs `  a
)  +  1 ) )  e.  RR )
181, 17syl5eqel 2705 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR )
19 0re 10040 . . . . 5  |-  0  e.  RR
2019a1i 11 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  0  e.  RR )
219absge0d 14183 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  ( abs `  a
) )
22 breq2 4657 . . . . . 6  |-  ( ( ( ( abs `  a
)  +  R )  /  2 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
23 breq2 4657 . . . . . 6  |-  ( ( ( abs `  a
)  +  1 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( ( abs `  a )  < 
( ( abs `  a
)  +  1 )  <-> 
( abs `  a
)  <  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) ) ) )
24 simpr 477 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  S )
2524, 2syl6eleq 2711 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  a  e.  ( `' abs " (
0 [,) R ) ) )
26 ffn 6045 . . . . . . . . . . . . 13  |-  ( abs
: CC --> RR  ->  abs 
Fn  CC )
27 elpreima 6337 . . . . . . . . . . . . 13  |-  ( abs 
Fn  CC  ->  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) ) )
284, 26, 27mp2b 10 . . . . . . . . . . . 12  |-  ( a  e.  ( `' abs " ( 0 [,) R
) )  <->  ( a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
2925, 28sylib 208 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  (
a  e.  CC  /\  ( abs `  a )  e.  ( 0 [,) R ) ) )
3029simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  e.  ( 0 [,) R
) )
31 iccssxr 12256 . . . . . . . . . . . 12  |-  ( 0 [,] +oo )  C_  RR*
32 pserf.g . . . . . . . . . . . . . 14  |-  G  =  ( x  e.  CC  |->  ( n  e.  NN0  |->  ( ( A `  n )  x.  (
x ^ n ) ) ) )
33 pserf.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A : NN0 --> CC )
34 pserf.r . . . . . . . . . . . . . 14  |-  R  =  sup ( { r  e.  RR  |  seq 0 (  +  , 
( G `  r
) )  e.  dom  ~~>  } ,  RR* ,  <  )
3532, 33, 34radcnvcl 24171 . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  ( 0 [,] +oo ) )
3635adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  ( 0 [,] +oo ) )
3731, 36sseldi 3601 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  S )  ->  R  e.  RR* )
38 elico2 12237 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  R  e.  RR* )  -> 
( ( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
3919, 37, 38sylancr 695 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  ( 0 [,) R )  <->  ( ( abs `  a )  e.  RR  /\  0  <_ 
( abs `  a
)  /\  ( abs `  a )  <  R
) ) )
4030, 39mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  e.  RR  /\  0  <_  ( abs `  a
)  /\  ( abs `  a )  <  R
) )
4140simp3d 1075 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
R )
4241adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
R )
43 avglt1 11270 . . . . . . . 8  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4410, 43sylan 488 . . . . . . 7  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  <  R  <->  ( abs `  a )  <  (
( ( abs `  a
)  +  R )  /  2 ) ) )
4542, 44mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  ( abs `  a )  < 
( ( ( abs `  a )  +  R
)  /  2 ) )
4610ltp1d 10954 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
( ( abs `  a
)  +  1 ) )
4746adantr 481 . . . . . 6  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( abs `  a
)  <  ( ( abs `  a )  +  1 ) )
4822, 23, 45, 47ifbothda 4123 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) ) )
4948, 1syl6breqr 4695 . . . 4  |-  ( (
ph  /\  a  e.  S )  ->  ( abs `  a )  < 
M )
5020, 10, 18, 21, 49lelttrd 10195 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  0  <  M )
5118, 50elrpd 11869 . 2  |-  ( (
ph  /\  a  e.  S )  ->  M  e.  RR+ )
52 breq1 4656 . . . 4  |-  ( ( ( ( abs `  a
)  +  R )  /  2 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( (
( ( abs `  a
)  +  R )  /  2 )  < 
R  <->  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  <  R ) )
53 breq1 4656 . . . 4  |-  ( ( ( abs `  a
)  +  1 )  =  if ( R  e.  RR ,  ( ( ( abs `  a
)  +  R )  /  2 ) ,  ( ( abs `  a
)  +  1 ) )  ->  ( (
( abs `  a
)  +  1 )  <  R  <->  if ( R  e.  RR , 
( ( ( abs `  a )  +  R
)  /  2 ) ,  ( ( abs `  a )  +  1 ) )  <  R
) )
54 avglt2 11271 . . . . . 6  |-  ( ( ( abs `  a
)  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  a
)  <  R  <->  ( (
( abs `  a
)  +  R )  /  2 )  < 
R ) )
5510, 54sylan 488 . . . . 5  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( abs `  a
)  <  R  <->  ( (
( abs `  a
)  +  R )  /  2 )  < 
R ) )
5642, 55mpbid 222 . . . 4  |-  ( ( ( ph  /\  a  e.  S )  /\  R  e.  RR )  ->  (
( ( abs `  a
)  +  R )  /  2 )  < 
R )
5715rexrd 10089 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  ->  (
( abs `  a
)  +  1 )  e.  RR* )
58 xrlenlt 10103 . . . . . . . 8  |-  ( ( R  e.  RR*  /\  (
( abs `  a
)  +  1 )  e.  RR* )  ->  ( R  <_  ( ( abs `  a )  +  1 )  <->  -.  ( ( abs `  a )  +  1 )  <  R
) )
5937, 57, 58syl2anc 693 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( R  <_  ( ( abs `  a )  +  1 )  <->  -.  ( ( abs `  a )  +  1 )  <  R
) )
60 0xr 10086 . . . . . . . . . . . . 13  |-  0  e.  RR*
61 pnfxr 10092 . . . . . . . . . . . . 13  |- +oo  e.  RR*
62 elicc1 12219 . . . . . . . . . . . . 13  |-  ( ( 0  e.  RR*  /\ +oo  e.  RR* )  ->  ( R  e.  ( 0 [,] +oo )  <->  ( R  e.  RR*  /\  0  <_  R  /\  R  <_ +oo )
) )
6360, 61, 62mp2an 708 . . . . . . . . . . . 12  |-  ( R  e.  ( 0 [,] +oo )  <->  ( R  e. 
RR*  /\  0  <_  R  /\  R  <_ +oo )
)
6435, 63sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  ( R  e.  RR*  /\  0  <_  R  /\  R  <_ +oo ) )
6564simp2d 1074 . . . . . . . . . 10  |-  ( ph  ->  0  <_  R )
6665adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  S )  ->  0  <_  R )
67 ge0gtmnf 12003 . . . . . . . . 9  |-  ( ( R  e.  RR*  /\  0  <_  R )  -> -oo  <  R )
6837, 66, 67syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  a  e.  S )  -> -oo  <  R )
69 xrre 12000 . . . . . . . . 9  |-  ( ( ( R  e.  RR*  /\  ( ( abs `  a
)  +  1 )  e.  RR )  /\  ( -oo  <  R  /\  R  <_  ( ( abs `  a )  +  1 ) ) )  ->  R  e.  RR )
7069expr 643 . . . . . . . 8  |-  ( ( ( R  e.  RR*  /\  ( ( abs `  a
)  +  1 )  e.  RR )  /\ -oo 
<  R )  ->  ( R  <_  ( ( abs `  a )  +  1 )  ->  R  e.  RR ) )
7137, 15, 68, 70syl21anc 1325 . . . . . . 7  |-  ( (
ph  /\  a  e.  S )  ->  ( R  <_  ( ( abs `  a )  +  1 )  ->  R  e.  RR ) )
7259, 71sylbird 250 . . . . . 6  |-  ( (
ph  /\  a  e.  S )  ->  ( -.  ( ( abs `  a
)  +  1 )  <  R  ->  R  e.  RR ) )
7372con1d 139 . . . . 5  |-  ( (
ph  /\  a  e.  S )  ->  ( -.  R  e.  RR  ->  ( ( abs `  a
)  +  1 )  <  R ) )
7473imp 445 . . . 4  |-  ( ( ( ph  /\  a  e.  S )  /\  -.  R  e.  RR )  ->  ( ( abs `  a
)  +  1 )  <  R )
7552, 53, 56, 74ifbothda 4123 . . 3  |-  ( (
ph  /\  a  e.  S )  ->  if ( R  e.  RR ,  ( ( ( abs `  a )  +  R )  / 
2 ) ,  ( ( abs `  a
)  +  1 ) )  <  R )
761, 75syl5eqbr 4688 . 2  |-  ( (
ph  /\  a  e.  S )  ->  M  <  R )
7751, 49, 763jca 1242 1  |-  ( (
ph  /\  a  e.  S )  ->  ( M  e.  RR+  /\  ( abs `  a )  < 
M  /\  M  <  R ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916    C_ wss 3574   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075    / cdiv 10684   2c2 11070   NN0cn0 11292   RR+crp 11832   [,)cico 12177   [,]cicc 12178    seqcseq 12801   ^cexp 12860   abscabs 13974    ~~> cli 14215   sum_csu 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  psercn  24180  pserdvlem1  24181  pserdvlem2  24182  pserdv  24183
  Copyright terms: Public domain W3C validator