| Step | Hyp | Ref
| Expression |
| 1 | | psrring.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | psrass.b |
. . . . . . . . . . . . 13
⊢ 𝐵 = (Base‘𝑆) |
| 3 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | psrdi.a |
. . . . . . . . . . . . 13
⊢ + =
(+g‘𝑆) |
| 5 | | psrass.x |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 6 | | psrass.y |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 7 | 1, 2, 3, 4, 5, 6 | psradd 19382 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘𝑓
(+g‘𝑅)𝑌)) |
| 8 | 7 | fveq1d 6193 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑋 + 𝑌)‘𝑥) = ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑥)) |
| 9 | 8 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑥)) |
| 10 | | ssrab2 3687 |
. . . . . . . . . . . 12
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ⊆ 𝐷 |
| 11 | | simpr 477 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 12 | 10, 11 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑥 ∈ 𝐷) |
| 13 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 14 | | psrass.d |
. . . . . . . . . . . . . . 15
⊢ 𝐷 = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 15 | 1, 13, 14, 2, 5 | psrelbas 19379 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
| 16 | 15 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑋:𝐷⟶(Base‘𝑅)) |
| 17 | 16 | ffnd 6046 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑋 Fn 𝐷) |
| 18 | 1, 13, 14, 2, 6 | psrelbas 19379 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌:𝐷⟶(Base‘𝑅)) |
| 19 | 18 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑌:𝐷⟶(Base‘𝑅)) |
| 20 | 19 | ffnd 6046 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑌 Fn 𝐷) |
| 21 | | ovex 6678 |
. . . . . . . . . . . . . 14
⊢
(ℕ0 ↑𝑚 𝐼) ∈ V |
| 22 | 14, 21 | rabex2 4815 |
. . . . . . . . . . . . 13
⊢ 𝐷 ∈ V |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝐷 ∈ V) |
| 24 | | inidm 3822 |
. . . . . . . . . . . 12
⊢ (𝐷 ∩ 𝐷) = 𝐷 |
| 25 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) = (𝑋‘𝑥)) |
| 26 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑥 ∈ 𝐷) → (𝑌‘𝑥) = (𝑌‘𝑥)) |
| 27 | 17, 20, 23, 23, 24, 25, 26 | ofval 6906 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) ∧ 𝑥 ∈ 𝐷) → ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑥) = ((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))) |
| 28 | 12, 27 | mpdan 702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑥) = ((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))) |
| 29 | 9, 28 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋 + 𝑌)‘𝑥) = ((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))) |
| 30 | 29 | oveq1d 6665 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) = (((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) |
| 31 | | psrring.r |
. . . . . . . . . 10
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 32 | 31 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑅 ∈ Ring) |
| 33 | 16, 12 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
| 34 | 19, 12 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑌‘𝑥) ∈ (Base‘𝑅)) |
| 35 | | psrass.z |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| 36 | 1, 13, 14, 2, 35 | psrelbas 19379 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑍:𝐷⟶(Base‘𝑅)) |
| 37 | 36 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑍:𝐷⟶(Base‘𝑅)) |
| 38 | | psrring.i |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 39 | 38 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝐼 ∈ 𝑉) |
| 40 | | simplr 792 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → 𝑘 ∈ 𝐷) |
| 41 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} |
| 42 | 14, 41 | psrbagconcl 19373 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐷 ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 43 | 39, 40, 11, 42 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 44 | 10, 43 | sseldi 3601 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑘 ∘𝑓 − 𝑥) ∈ 𝐷) |
| 45 | 37, 44 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (𝑍‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅)) |
| 46 | | eqid 2622 |
. . . . . . . . . 10
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 47 | 13, 3, 46 | ringdir 18567 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ ((𝑋‘𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅))) → (((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))(+g‘𝑅)((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) |
| 48 | 32, 33, 34, 45, 47 | syl13anc 1328 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (((𝑋‘𝑥)(+g‘𝑅)(𝑌‘𝑥))(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))(+g‘𝑅)((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) |
| 49 | 30, 48 | eqtrd 2656 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) = (((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))(+g‘𝑅)((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) |
| 50 | 49 | mpteq2dva 4744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))(+g‘𝑅)((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))) |
| 51 | 14 | psrbaglefi 19372 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 52 | 38, 51 | sylan 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ∈ Fin) |
| 53 | 13, 46 | ringcl 18561 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋‘𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅)) → ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) ∈ (Base‘𝑅)) |
| 54 | 32, 33, 45, 53 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) ∈ (Base‘𝑅)) |
| 55 | 13, 46 | ringcl 18561 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑌‘𝑥) ∈ (Base‘𝑅) ∧ (𝑍‘(𝑘 ∘𝑓 − 𝑥)) ∈ (Base‘𝑅)) → ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) ∈ (Base‘𝑅)) |
| 56 | 32, 34, 45, 55 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐷) ∧ 𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) → ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))) ∈ (Base‘𝑅)) |
| 57 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) |
| 58 | | eqidd 2623 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) |
| 59 | 52, 54, 56, 57, 58 | offval2 6914 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) ∘𝑓
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))(+g‘𝑅)((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))) |
| 60 | 50, 59 | eqtr4d 2659 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) ∘𝑓
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))) |
| 61 | 60 | oveq2d 6666 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) ∘𝑓
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 62 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ Ring) |
| 63 | | ringcmn 18581 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
| 64 | 62, 63 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → 𝑅 ∈ CMnd) |
| 65 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) |
| 66 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) |
| 67 | 13, 3, 64, 52, 54, 56, 65, 66 | gsummptfidmadd2 18326 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg ((𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))) ∘𝑓
(+g‘𝑅)(𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))) = ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 68 | 61, 67 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) = ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 69 | 68 | mpteq2dva 4744 |
. 2
⊢ (𝜑 → (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 70 | | psrass.t |
. . 3
⊢ × =
(.r‘𝑆) |
| 71 | | ringgrp 18552 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 72 | 31, 71 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 73 | 1, 2, 4, 72, 5, 6 | psraddcl 19383 |
. . 3
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) |
| 74 | 1, 2, 46, 70, 14, 73, 35 | psrmulfval 19385 |
. 2
⊢ (𝜑 → ((𝑋 + 𝑌) × 𝑍) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ (((𝑋 + 𝑌)‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 75 | 1, 2, 70, 31, 5, 35 | psrmulcl 19388 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) ∈ 𝐵) |
| 76 | 1, 2, 70, 31, 6, 35 | psrmulcl 19388 |
. . . 4
⊢ (𝜑 → (𝑌 × 𝑍) ∈ 𝐵) |
| 77 | 1, 2, 3, 4, 75, 76 | psradd 19382 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = ((𝑋 × 𝑍) ∘𝑓
(+g‘𝑅)(𝑌 × 𝑍))) |
| 78 | 22 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 79 | | ovexd 6680 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) ∈ V) |
| 80 | | ovexd 6680 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))) ∈ V) |
| 81 | 1, 2, 46, 70, 14, 5, 35 | psrmulfval 19385 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 82 | 1, 2, 46, 70, 14, 6, 35 | psrmulfval 19385 |
. . . 4
⊢ (𝜑 → (𝑌 × 𝑍) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 83 | 78, 79, 80, 81, 82 | offval2 6914 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑍) ∘𝑓
(+g‘𝑅)(𝑌 × 𝑍)) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 84 | 77, 83 | eqtrd 2656 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑍) + (𝑌 × 𝑍)) = (𝑘 ∈ 𝐷 ↦ ((𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑋‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))(+g‘𝑅)(𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑌‘𝑥)(.r‘𝑅)(𝑍‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 85 | 69, 74, 84 | 3eqtr4d 2666 |
1
⊢ (𝜑 → ((𝑋 + 𝑌) × 𝑍) = ((𝑋 × 𝑍) + (𝑌 × 𝑍))) |