MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psropprmul Structured version   Visualization version   GIF version

Theorem psropprmul 19608
Description: Reversing multiplication in a ring reverses multiplication in the power series ring. (Contributed by Stefan O'Rear, 27-Mar-2015.)
Hypotheses
Ref Expression
psropprmul.y 𝑌 = (𝐼 mPwSer 𝑅)
psropprmul.s 𝑆 = (oppr𝑅)
psropprmul.z 𝑍 = (𝐼 mPwSer 𝑆)
psropprmul.t · = (.r𝑌)
psropprmul.u = (.r𝑍)
psropprmul.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
psropprmul ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))

Proof of Theorem psropprmul
Dummy variables 𝑏 𝑐 𝑒 𝑓 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2622 . . . . 5 (0g𝑅) = (0g𝑅)
3 ringcmn 18581 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
433ad2ant1 1082 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝑅 ∈ CMnd)
54adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑅 ∈ CMnd)
6 ovex 6678 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
76rabex 4813 . . . . . . 7 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∈ V
87rabex 4813 . . . . . 6 {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ V
98a1i 11 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ V)
10 simpll1 1100 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑅 ∈ Ring)
11 psropprmul.y . . . . . . . . . 10 𝑌 = (𝐼 mPwSer 𝑅)
12 eqid 2622 . . . . . . . . . 10 {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
13 psropprmul.b . . . . . . . . . 10 𝐵 = (Base‘𝑌)
14 simp3 1063 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺𝐵)
1511, 1, 12, 13, 14psrelbas 19379 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1615adantr 481 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐺:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
17 elrabi 3359 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} → 𝑒 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
18 ffvelrn 6357 . . . . . . . 8 ((𝐺:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅) ∧ 𝑒 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝐺𝑒) ∈ (Base‘𝑅))
1916, 17, 18syl2an 494 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝐺𝑒) ∈ (Base‘𝑅))
20 simp2 1062 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹𝐵)
2111, 1, 12, 13, 20psrelbas 19379 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
2221ad2antrr 762 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝐹:{𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
23 ssrab2 3687 . . . . . . . . 9 {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ⊆ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
24 reldmpsr 19361 . . . . . . . . . . . . 13 Rel dom mPwSer
2511, 13, 24strov2rcl 15922 . . . . . . . . . . . 12 (𝐺𝐵𝐼 ∈ V)
26253ad2ant3 1084 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐼 ∈ V)
2726ad2antrr 762 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝐼 ∈ V)
28 simplr 792 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
29 simpr 477 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
30 eqid 2622 . . . . . . . . . . 11 {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} = {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}
3112, 30psrbagconcl 19373 . . . . . . . . . 10 ((𝐼 ∈ V ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
3227, 28, 29, 31syl3anc 1326 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓𝑒) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
3323, 32sseldi 3601 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓𝑒) ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
3422, 33ffvelrnd 6360 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝐹‘(𝑏𝑓𝑒)) ∈ (Base‘𝑅))
35 eqid 2622 . . . . . . . 8 (.r𝑅) = (.r𝑅)
361, 35ringcl 18561 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐺𝑒) ∈ (Base‘𝑅) ∧ (𝐹‘(𝑏𝑓𝑒)) ∈ (Base‘𝑅)) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))) ∈ (Base‘𝑅))
3710, 19, 34, 36syl3anc 1326 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))) ∈ (Base‘𝑅))
38 eqid 2622 . . . . . 6 (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))))
3937, 38fmptd 6385 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))):{𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}⟶(Base‘𝑅))
40 mptexg 6484 . . . . . . 7 ({𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ V → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∈ V)
418, 40mp1i 13 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∈ V)
42 funmpt 5926 . . . . . . 7 Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))))
4342a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))))
44 fvex 6201 . . . . . . 7 (0g𝑅) ∈ V
4544a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (0g𝑅) ∈ V)
4612psrbaglefi 19372 . . . . . . 7 ((𝐼 ∈ V ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ Fin)
4726, 46sylan 488 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ Fin)
48 suppssdm 7308 . . . . . . . 8 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) supp (0g𝑅)) ⊆ dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))))
4938dmmptss 5631 . . . . . . . 8 dom (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}
5048, 49sstri 3612 . . . . . . 7 ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}
5150a1i 11 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
52 suppssfifsupp 8290 . . . . . 6 ((((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∈ V ∧ Fun (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ∈ Fin ∧ ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) supp (0g𝑅)) ⊆ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) finSupp (0g𝑅))
5341, 43, 45, 47, 51, 52syl32anc 1334 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) finSupp (0g𝑅))
5412, 30psrbagconf1o 19374 . . . . . 6 ((𝐼 ∈ V ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
5526, 54sylan 488 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)):{𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}–1-1-onto→{𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
561, 2, 5, 9, 39, 53, 55gsumf1o 18317 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))))) = (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)))))
5726ad2antrr 762 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝐼 ∈ V)
58 simplr 792 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
59 simpr 477 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
6012, 30psrbagconcl 19373 . . . . . . . 8 ((𝐼 ∈ V ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
6157, 58, 59, 60syl3anc 1326 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓𝑐) ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏})
62 eqidd 2623 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)))
63 eqidd 2623 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) = (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))))
64 fveq2 6191 . . . . . . . 8 (𝑒 = (𝑏𝑓𝑐) → (𝐺𝑒) = (𝐺‘(𝑏𝑓𝑐)))
65 oveq2 6658 . . . . . . . . 9 (𝑒 = (𝑏𝑓𝑐) → (𝑏𝑓𝑒) = (𝑏𝑓 − (𝑏𝑓𝑐)))
6665fveq2d 6195 . . . . . . . 8 (𝑒 = (𝑏𝑓𝑐) → (𝐹‘(𝑏𝑓𝑒)) = (𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐))))
6764, 66oveq12d 6668 . . . . . . 7 (𝑒 = (𝑏𝑓𝑐) → ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))) = ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐)))))
6861, 62, 63, 67fmptco 6396 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐))))))
6912psrbagf 19365 . . . . . . . . . . . . 13 ((𝐼 ∈ V ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
7026, 69sylan 488 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑏:𝐼⟶ℕ0)
7170adantr 481 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑏:𝐼⟶ℕ0)
7226adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝐼 ∈ V)
73 elrabi 3359 . . . . . . . . . . . 12 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} → 𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin})
7412psrbagf 19365 . . . . . . . . . . . 12 ((𝐼 ∈ V ∧ 𝑐 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → 𝑐:𝐼⟶ℕ0)
7572, 73, 74syl2an 494 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → 𝑐:𝐼⟶ℕ0)
76 nn0cn 11302 . . . . . . . . . . . . 13 (𝑒 ∈ ℕ0𝑒 ∈ ℂ)
77 nn0cn 11302 . . . . . . . . . . . . 13 (𝑓 ∈ ℕ0𝑓 ∈ ℂ)
78 nncan 10310 . . . . . . . . . . . . 13 ((𝑒 ∈ ℂ ∧ 𝑓 ∈ ℂ) → (𝑒 − (𝑒𝑓)) = 𝑓)
7976, 77, 78syl2an 494 . . . . . . . . . . . 12 ((𝑒 ∈ ℕ0𝑓 ∈ ℕ0) → (𝑒 − (𝑒𝑓)) = 𝑓)
8079adantl 482 . . . . . . . . . . 11 (((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) ∧ (𝑒 ∈ ℕ0𝑓 ∈ ℕ0)) → (𝑒 − (𝑒𝑓)) = 𝑓)
8157, 71, 75, 80caonncan 6935 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝑏𝑓 − (𝑏𝑓𝑐)) = 𝑐)
8281fveq2d 6195 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → (𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐))) = (𝐹𝑐))
8382oveq2d 6666 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐)))) = ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹𝑐)))
84 psropprmul.s . . . . . . . . 9 𝑆 = (oppr𝑅)
85 eqid 2622 . . . . . . . . 9 (.r𝑆) = (.r𝑆)
861, 35, 84, 85opprmul 18626 . . . . . . . 8 ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))) = ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹𝑐))
8783, 86syl6eqr 2674 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) ∧ 𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏}) → ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐)))) = ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))
8887mpteq2dva 4744 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺‘(𝑏𝑓𝑐))(.r𝑅)(𝐹‘(𝑏𝑓 − (𝑏𝑓𝑐))))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))))
8968, 88eqtrd 2656 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐))) = (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))))
9089oveq2d 6666 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg ((𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))) ∘ (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ (𝑏𝑓𝑐)))) = (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))))
918mptex 6486 . . . . . . . 8 (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))) ∈ V
9291a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))) ∈ V)
93 id 22 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
94 fvex 6201 . . . . . . . . 9 (oppr𝑅) ∈ V
9584, 94eqeltri 2697 . . . . . . . 8 𝑆 ∈ V
9695a1i 11 . . . . . . 7 (𝑅 ∈ Ring → 𝑆 ∈ V)
9784, 1opprbas 18629 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑆)
9897a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (Base‘𝑅) = (Base‘𝑆))
99 eqid 2622 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
10084, 99oppradd 18630 . . . . . . . 8 (+g𝑅) = (+g𝑆)
101100a1i 11 . . . . . . 7 (𝑅 ∈ Ring → (+g𝑅) = (+g𝑆))
10292, 93, 96, 98, 101gsumpropd 17272 . . . . . 6 (𝑅 ∈ Ring → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))))
1031023ad2ant1 1082 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))))
104103adantr 481 . . . 4 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))))
10556, 90, 1043eqtrd 2660 . . 3 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) ∧ 𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}) → (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒))))) = (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐))))))
106105mpteq2dva 4744 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))))) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))))))
107 psropprmul.t . . 3 · = (.r𝑌)
10811, 13, 35, 107, 12, 14, 20psrmulfval 19385 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐺 · 𝐹) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑅 Σg (𝑒 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐺𝑒)(.r𝑅)(𝐹‘(𝑏𝑓𝑒)))))))
109 psropprmul.z . . 3 𝑍 = (𝐼 mPwSer 𝑆)
110 eqid 2622 . . 3 (Base‘𝑍) = (Base‘𝑍)
111 psropprmul.u . . 3 = (.r𝑍)
11297a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘𝑅) = (Base‘𝑆))
113112psrbaspropd 19605 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
11411fveq2i 6194 . . . . . 6 (Base‘𝑌) = (Base‘(𝐼 mPwSer 𝑅))
11513, 114eqtri 2644 . . . . 5 𝐵 = (Base‘(𝐼 mPwSer 𝑅))
116109fveq2i 6194 . . . . 5 (Base‘𝑍) = (Base‘(𝐼 mPwSer 𝑆))
117113, 115, 1163eqtr4g 2681 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐵 = (Base‘𝑍))
11820, 117eleqtrd 2703 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐹 ∈ (Base‘𝑍))
11914, 117eleqtrd 2703 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → 𝐺 ∈ (Base‘𝑍))
120109, 110, 85, 111, 12, 118, 119psrmulfval 19385 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝑏 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ↦ (𝑆 Σg (𝑐 ∈ {𝑑 ∈ {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin} ∣ 𝑑𝑟𝑏} ↦ ((𝐹𝑐)(.r𝑆)(𝐺‘(𝑏𝑓𝑐)))))))
121106, 108, 1203eqtr4rd 2667 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐺 · 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653  cmpt 4729  ccnv 5113  dom cdm 5114  cima 5117  ccom 5118  Fun wfun 5882  wf 5884  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  𝑓 cof 6895  𝑟 cofr 6896   supp csupp 7295  𝑚 cmap 7857  Fincfn 7955   finSupp cfsupp 8275  cc 9934  cle 10075  cmin 10266  cn 11020  0cn0 11292  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100   Σg cgsu 16101  CMndccmn 18193  Ringcrg 18547  opprcoppr 18622   mPwSer cmps 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-tset 15960  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-oppr 18623  df-psr 19356
This theorem is referenced by:  ply1opprmul  19609
  Copyright terms: Public domain W3C validator