MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem5OLD Structured version   Visualization version   GIF version

Theorem rpnnen1lem5OLD 11824
Description: Lemma for rpnnen1OLD 11825. (Contributed by Mario Carneiro, 12-May-2013.) Obsolete version of rpnnen1lem5 11818 as of 13-Aug-2021. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1.1OLD 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1.2OLD 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
Assertion
Ref Expression
rpnnen1lem5OLD (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem5OLD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1.1OLD . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1.2OLD . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
31, 2rpnnen1lem3OLD 11822 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
41, 2rpnnen1lem1OLD 11821 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ))
5 qex 11800 . . . . . . 7 ℚ ∈ V
6 nnex 11026 . . . . . . 7 ℕ ∈ V
75, 6elmap 7886 . . . . . 6 ((𝐹𝑥) ∈ (ℚ ↑𝑚 ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
84, 7sylib 208 . . . . 5 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
9 frn 6053 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
10 qssre 11798 . . . . . 6 ℚ ⊆ ℝ
119, 10syl6ss 3615 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
128, 11syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
13 1nn 11031 . . . . . . . 8 1 ∈ ℕ
1413ne0ii 3923 . . . . . . 7 ℕ ≠ ∅
15 fdm 6051 . . . . . . . 8 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1615neeq1d 2853 . . . . . . 7 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1714, 16mpbiri 248 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
18 dm0rn0 5342 . . . . . . 7 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1918necon3bii 2846 . . . . . 6 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
2017, 19sylib 208 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
218, 20syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
22 breq2 4657 . . . . . . 7 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 2986 . . . . . 6 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3309 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
253, 24mpdan 702 . . . 4 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 id 22 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
27 suprleub 10989 . . . 4 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2812, 21, 25, 26, 27syl31anc 1329 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
293, 28mpbird 247 . 2 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥)
301, 2rpnnen1lem4OLD 11823 . . . . . . . . 9 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
31 resubcl 10345 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3230, 31mpdan 702 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3332adantr 481 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
34 posdif 10521 . . . . . . . . . 10 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3530, 34mpancom 703 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3635biimpa 501 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )))
3736gt0ne0d 10592 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ≠ 0)
3833, 37rereccld 10852 . . . . . 6 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ)
39 arch 11289 . . . . . 6 ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4038, 39syl 17 . . . . 5 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4140ex 450 . . . 4 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘))
421, 2rpnnen1lem2 11814 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
4342zred 11482 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
44433adant3 1081 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) ∈ ℝ)
4544ltp1d 10954 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
4633, 36jca 554 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
47 nnre 11027 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
48 nngt0 11049 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
4947, 48jca 554 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
50 ltrec1 10910 . . . . . . . . . . . . 13 ((((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5146, 49, 50syl2an 494 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5230ad2antrr 762 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
53 nnrecre 11057 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
5453adantl 482 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
55 simpll 790 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5652, 54, 55ltaddsub2d 10628 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5712adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ran (𝐹𝑥) ⊆ ℝ)
58 ffn 6045 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
598, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) Fn ℕ)
60 fnfvelrn 6356 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6159, 60sylan 488 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6257, 61sseldd 3604 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ℝ)
6330adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
6453adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6512, 21, 253jca 1242 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
6665adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
67 suprub 10984 . . . . . . . . . . . . . . . . 17 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥)) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6866, 61, 67syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6962, 63, 64, 68leadd1dd 10641 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)))
7062, 64readdcld 10069 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ)
71 readdcl 10019 . . . . . . . . . . . . . . . . 17 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
7230, 53, 71syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
73 simpl 473 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
74 lelttr 10128 . . . . . . . . . . . . . . . . 17 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7574expd 452 . . . . . . . . . . . . . . . 16 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7670, 72, 73, 75syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7769, 76mpd 15 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7877adantlr 751 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7956, 78sylbird 250 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8051, 79sylbid 230 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8142peano2zd 11485 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℤ)
82 oveq1 6657 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → (𝑛 / 𝑘) = ((sup(𝑇, ℝ, < ) + 1) / 𝑘))
8382breq1d 4663 . . . . . . . . . . . . . . . . . 18 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → ((𝑛 / 𝑘) < 𝑥 ↔ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8483, 1elrab2 3366 . . . . . . . . . . . . . . . . 17 ((sup(𝑇, ℝ, < ) + 1) ∈ 𝑇 ↔ ((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8584biimpri 218 . . . . . . . . . . . . . . . 16 (((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
8681, 85sylan 488 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
87 ssrab2 3687 . . . . . . . . . . . . . . . . . . . 20 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
881, 87eqsstri 3635 . . . . . . . . . . . . . . . . . . 19 𝑇 ⊆ ℤ
89 zssre 11384 . . . . . . . . . . . . . . . . . . 19 ℤ ⊆ ℝ
9088, 89sstri 3612 . . . . . . . . . . . . . . . . . 18 𝑇 ⊆ ℝ
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
92 remulcl 10021 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9392ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9447, 93sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
95 btwnz 11479 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
9695simpld 475 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
98 zre 11381 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
9998adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
100 simpll 790 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
10149ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
102 ltdivmul 10898 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
10399, 100, 101, 102syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
104103rexbidva 3049 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
10597, 104mpbird 247 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
106 rabn0 3958 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
107105, 106sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
1081neeq1i 2858 . . . . . . . . . . . . . . . . . 18 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
109107, 108sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
1101rabeq2i 3197 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
11147ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
112111, 100, 92syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
113 ltle 10126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
11499, 112, 113syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
115103, 114sylbid 230 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
116115impr 649 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
117110, 116sylan2b 492 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
118117ralrimiva 2966 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
119 breq2 4657 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
120119ralbidv 2986 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
121120rspcev 3309 . . . . . . . . . . . . . . . . . 18 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12294, 118, 121syl2anc 693 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12391, 109, 1223jca 1242 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦))
124 suprub 10984 . . . . . . . . . . . . . . . 16 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
125123, 124sylan 488 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
12686, 125syldan 487 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
127126ex 450 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < )))
12842zcnd 11483 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℂ)
129 1cnd 10056 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
130 nncn 11028 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
131 nnne0 11053 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
132130, 131jca 554 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
133132adantl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
134 divdir 10710 . . . . . . . . . . . . . . . 16 ((sup(𝑇, ℝ, < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
135128, 129, 133, 134syl3anc 1326 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
1366mptex 6486 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
1372fvmpt2 6291 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
138136, 137mpan2 707 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
139138fveq1d 6193 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
140 ovex 6678 . . . . . . . . . . . . . . . . . 18 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
141 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
142141fvmpt2 6291 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
143140, 142mpan2 707 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
144139, 143sylan9eq 2676 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
145144oveq1d 6665 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
146135, 145eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = (((𝐹𝑥)‘𝑘) + (1 / 𝑘)))
147146breq1d 4663 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 ↔ (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
14881zred 11482 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
149148, 43lenltd 10183 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ) ↔ ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
150127, 147, 1493imtr3d 282 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
151150adantlr 751 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15280, 151syld 47 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
153152exp31 630 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
154153com4l 92 . . . . . . . 8 (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (𝑥 ∈ ℝ → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
155154com14 96 . . . . . . 7 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
1561553imp 1256 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15745, 156mt2d 131 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
158157rexlimdv3a 3033 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
15941, 158syld 47 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
160159pm2.01d 181 . 2 (𝑥 ∈ ℝ → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
161 eqlelt 10125 . . 3 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16230, 161mpancom 703 . 2 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16329, 160, 162mpbir2and 957 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  cmpt 4729  dom cdm 5114  ran crn 5115   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  supcsup 8346  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  cz 11377  cq 11788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-q 11789
This theorem is referenced by:  rpnnen1OLD  11825
  Copyright terms: Public domain W3C validator