Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem48 Structured version   Visualization version   GIF version

Theorem etransclem48 40499
Description: e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
Hypotheses
Ref Expression
etransclem48.q (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
etransclem48.qe0 (𝜑 → (𝑄‘e) = 0)
etransclem48.a 𝐴 = (coeff‘𝑄)
etransclem48.a0 (𝜑 → (𝐴‘0) ≠ 0)
etransclem48.m 𝑀 = (deg‘𝑄)
etransclem48.c 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
etransclem48.s 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
etransclem48.i 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
etransclem48.t 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
Assertion
Ref Expression
etransclem48 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Distinct variable groups:   𝐴,𝑗,𝑘   𝐴,𝑛,𝑗   𝐶,𝑖,𝑛   𝑖,𝐼,𝑛   𝑗,𝑀,𝑘   𝑛,𝑀   𝑄,𝑗   𝑆,𝑖   𝑇,𝑗,𝑘   𝜑,𝑖,𝑛   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖)   𝐶(𝑗,𝑘)   𝑄(𝑖,𝑘,𝑛)   𝑆(𝑗,𝑘,𝑛)   𝑇(𝑖,𝑛)   𝐼(𝑗,𝑘)   𝑀(𝑖)

Proof of Theorem etransclem48
Dummy variables 𝑥 𝑦 𝑧 𝑒 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etransclem48.q . . . . . . . . . 10 (𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
21eldifad 3586 . . . . . . . . 9 (𝜑𝑄 ∈ (Poly‘ℤ))
3 0zd 11389 . . . . . . . . 9 (𝜑 → 0 ∈ ℤ)
4 etransclem48.a . . . . . . . . . 10 𝐴 = (coeff‘𝑄)
54coef2 23987 . . . . . . . . 9 ((𝑄 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → 𝐴:ℕ0⟶ℤ)
62, 3, 5syl2anc 693 . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℤ)
7 0nn0 11307 . . . . . . . . 9 0 ∈ ℕ0
87a1i 11 . . . . . . . 8 (𝜑 → 0 ∈ ℕ0)
96, 8ffvelrnd 6360 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℤ)
10 zabscl 14053 . . . . . . 7 ((𝐴‘0) ∈ ℤ → (abs‘(𝐴‘0)) ∈ ℤ)
119, 10syl 17 . . . . . 6 (𝜑 → (abs‘(𝐴‘0)) ∈ ℤ)
12 etransclem48.m . . . . . . . . 9 𝑀 = (deg‘𝑄)
13 dgrcl 23989 . . . . . . . . . 10 (𝑄 ∈ (Poly‘ℤ) → (deg‘𝑄) ∈ ℕ0)
142, 13syl 17 . . . . . . . . 9 (𝜑 → (deg‘𝑄) ∈ ℕ0)
1512, 14syl5eqel 2705 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
1615faccld 13071 . . . . . . 7 (𝜑 → (!‘𝑀) ∈ ℕ)
1716nnzd 11481 . . . . . 6 (𝜑 → (!‘𝑀) ∈ ℤ)
18 ssrab2 3687 . . . . . . . 8 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℕ0
19 nn0ssz 11398 . . . . . . . 8 0 ⊆ ℤ
2018, 19sstri 3612 . . . . . . 7 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ ℤ
21 etransclem48.i . . . . . . . 8 𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )
22 nn0uz 11722 . . . . . . . . . 10 0 = (ℤ‘0)
2318, 22sseqtri 3637 . . . . . . . . 9 {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0)
24 1rp 11836 . . . . . . . . . . 11 1 ∈ ℝ+
25 nfv 1843 . . . . . . . . . . . . . 14 𝑛𝜑
26 nfmpt1 4747 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0𝐶)
27 nfmpt1 4747 . . . . . . . . . . . . . 14 𝑛(𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
28 etransclem48.s . . . . . . . . . . . . . . 15 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
29 nfmpt1 4747 . . . . . . . . . . . . . . 15 𝑛(𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
3028, 29nfcxfr 2762 . . . . . . . . . . . . . 14 𝑛𝑆
31 nn0ex 11298 . . . . . . . . . . . . . . . . 17 0 ∈ V
3231mptex 6486 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0𝐶) ∈ V
3332a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑛 ∈ ℕ0𝐶) ∈ V)
34 etransclem48.c . . . . . . . . . . . . . . . 16 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))
35 fzfid 12772 . . . . . . . . . . . . . . . . 17 (𝜑 → (0...𝑀) ∈ Fin)
366adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝐴:ℕ0⟶ℤ)
37 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℕ0)
3837adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℕ0)
3936, 38ffvelrnd 6360 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℤ)
4039zcnd 11483 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (𝐴𝑗) ∈ ℂ)
41 ere 14819 . . . . . . . . . . . . . . . . . . . . . . . 24 e ∈ ℝ
4241recni 10052 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℂ
4342a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → e ∈ ℂ)
44 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
4544zcnd 11483 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℂ)
4645adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0...𝑀)) → 𝑗 ∈ ℂ)
4743, 46cxpcld 24454 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0...𝑀)) → (e↑𝑐𝑗) ∈ ℂ)
4840, 47mulcld 10060 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0...𝑀)) → ((𝐴𝑗) · (e↑𝑐𝑗)) ∈ ℂ)
4948abscld 14175 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℝ)
5049recnd 10068 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (abs‘((𝐴𝑗) · (e↑𝑐𝑗))) ∈ ℂ)
5115nn0cnd 11353 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ ℂ)
52 peano2nn0 11333 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0)
5315, 52syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑀 + 1) ∈ ℕ0)
5451, 53expcld 13008 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℂ)
5551, 54mulcld 10060 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5655adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℂ)
5750, 56mulcld 10060 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5835, 57fsumcl 14464 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
5934, 58syl5eqel 2705 . . . . . . . . . . . . . . 15 (𝜑𝐶 ∈ ℂ)
60 eqidd 2623 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶))
61 eqidd 2623 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ ℕ0) ∧ 𝑛 = 𝑖) → 𝐶 = 𝐶)
62 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝑖 ∈ ℕ0)
6359adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ ℕ0) → 𝐶 ∈ ℂ)
6460, 61, 62, 63fvmptd 6288 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑖) = 𝐶)
6522, 3, 33, 59, 64climconst 14274 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0𝐶) ⇝ 𝐶)
6631mptex 6486 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))) ∈ V
6728, 66eqeltri 2697 . . . . . . . . . . . . . . 15 𝑆 ∈ V
6867a1i 11 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ V)
69 eqid 2622 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
7069expfac 39889 . . . . . . . . . . . . . . 15 ((𝑀↑(𝑀 + 1)) ∈ ℂ → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
7154, 70syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ⇝ 0)
72 simpr 477 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
7359adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
74 eqid 2622 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0𝐶) = (𝑛 ∈ ℕ0𝐶)
7574fvmpt2 6291 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝐶 ∈ ℂ) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7672, 73, 75syl2anc 693 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) = 𝐶)
7776, 73eqeltrd 2701 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0𝐶)‘𝑛) ∈ ℂ)
78 ovex 6678 . . . . . . . . . . . . . . . . 17 (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V
7969fvmpt2 6291 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ V) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8078, 79mpan2 707 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8180adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) = (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))
8254adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
8382, 72expcld 13008 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → ((𝑀↑(𝑀 + 1))↑𝑛) ∈ ℂ)
8472faccld 13071 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℕ)
8584nncnd 11036 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ∈ ℂ)
8684nnne0d 11065 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ0) → (!‘𝑛) ≠ 0)
8783, 85, 86divcld 10801 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) ∈ ℂ)
8881, 87eqeltrd 2701 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛) ∈ ℂ)
89 ovex 6678 . . . . . . . . . . . . . . . . 17 (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V
9028fvmpt2 6291 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0 ∧ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) ∈ V) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9189, 90mpan2 707 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9291adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9376, 81oveq12d 6668 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))
9492, 93eqtr4d 2659 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)))
9525, 26, 27, 30, 22, 3, 65, 68, 71, 77, 88, 94climmulf 39836 . . . . . . . . . . . . 13 (𝜑𝑆 ⇝ (𝐶 · 0))
9659mul01d 10235 . . . . . . . . . . . . 13 (𝜑 → (𝐶 · 0) = 0)
9795, 96breqtrd 4679 . . . . . . . . . . . 12 (𝜑𝑆 ⇝ 0)
98 eqidd 2623 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) = (𝑆𝑛))
9977, 88mulcld 10060 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 ∈ ℕ0𝐶)‘𝑛) · ((𝑛 ∈ ℕ0 ↦ (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))‘𝑛)) ∈ ℂ)
10094, 99eqeltrd 2701 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ0) → (𝑆𝑛) ∈ ℂ)
10130, 22, 3, 68, 98, 100clim0cf 39886 . . . . . . . . . . . 12 (𝜑 → (𝑆 ⇝ 0 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒))
10297, 101mpbid 222 . . . . . . . . . . 11 (𝜑 → ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒)
103 breq2 4657 . . . . . . . . . . . . 13 (𝑒 = 1 → ((abs‘(𝑆𝑛)) < 𝑒 ↔ (abs‘(𝑆𝑛)) < 1))
104103rexralbidv 3058 . . . . . . . . . . . 12 (𝑒 = 1 → (∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒 ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1))
105104rspcva 3307 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 𝑒) → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
10624, 102, 105sylancr 695 . . . . . . . . . 10 (𝜑 → ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
107 rabn0 3958 . . . . . . . . . 10 ({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅ ↔ ∃𝑖 ∈ ℕ0𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1)
108106, 107sylibr 224 . . . . . . . . 9 (𝜑 → {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅)
109 infssuzcl 11772 . . . . . . . . 9 (({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ⊆ (ℤ‘0) ∧ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ≠ ∅) → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11023, 108, 109sylancr 695 . . . . . . . 8 (𝜑 → inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < ) ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11121, 110syl5eqel 2705 . . . . . . 7 (𝜑𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
11220, 111sseldi 3601 . . . . . 6 (𝜑𝐼 ∈ ℤ)
113 tpssi 4369 . . . . . 6 (((abs‘(𝐴‘0)) ∈ ℤ ∧ (!‘𝑀) ∈ ℤ ∧ 𝐼 ∈ ℤ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
11411, 17, 112, 113syl3anc 1326 . . . . 5 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℤ)
115 etransclem48.t . . . . . 6 𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )
116 xrltso 11974 . . . . . . . 8 < Or ℝ*
117116a1i 11 . . . . . . 7 (𝜑 → < Or ℝ*)
118 tpfi 8236 . . . . . . . 8 {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin
119118a1i 11 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin)
12011tpnzd 4314 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅)
121 zssre 11384 . . . . . . . . 9 ℤ ⊆ ℝ
122 ressxr 10083 . . . . . . . . 9 ℝ ⊆ ℝ*
123121, 122sstri 3612 . . . . . . . 8 ℤ ⊆ ℝ*
124114, 123syl6ss 3615 . . . . . . 7 (𝜑 → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
125 fisupcl 8375 . . . . . . 7 (( < Or ℝ* ∧ ({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ∈ Fin ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ≠ ∅ ∧ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)) → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
126117, 119, 120, 124, 125syl13anc 1328 . . . . . 6 (𝜑 → sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
127115, 126syl5eqel 2705 . . . . 5 (𝜑𝑇 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
128114, 127sseldd 3604 . . . 4 (𝜑𝑇 ∈ ℤ)
129 0red 10041 . . . . 5 (𝜑 → 0 ∈ ℝ)
13016nnred 11035 . . . . 5 (𝜑 → (!‘𝑀) ∈ ℝ)
131128zred 11482 . . . . 5 (𝜑𝑇 ∈ ℝ)
13216nngt0d 11064 . . . . 5 (𝜑 → 0 < (!‘𝑀))
133 fvex 6201 . . . . . . . 8 (!‘𝑀) ∈ V
134133tpid2 4304 . . . . . . 7 (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
135 supxrub 12154 . . . . . . 7 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (!‘𝑀) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
136124, 134, 135sylancl 694 . . . . . 6 (𝜑 → (!‘𝑀) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
137136, 115syl6breqr 4695 . . . . 5 (𝜑 → (!‘𝑀) ≤ 𝑇)
138129, 130, 131, 132, 137ltletrd 10197 . . . 4 (𝜑 → 0 < 𝑇)
139 elnnz 11387 . . . 4 (𝑇 ∈ ℕ ↔ (𝑇 ∈ ℤ ∧ 0 < 𝑇))
140128, 138, 139sylanbrc 698 . . 3 (𝜑𝑇 ∈ ℕ)
141 prmunb 15618 . . 3 (𝑇 ∈ ℕ → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
142140, 141syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℙ 𝑇 < 𝑝)
14313ad2ant1 1082 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))
144 etransclem48.qe0 . . . . 5 (𝜑 → (𝑄‘e) = 0)
1451443ad2ant1 1082 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑄‘e) = 0)
146 etransclem48.a0 . . . . 5 (𝜑 → (𝐴‘0) ≠ 0)
1471463ad2ant1 1082 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ≠ 0)
148 simp2 1062 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℙ)
1499zcnd 11483 . . . . . . 7 (𝜑 → (𝐴‘0) ∈ ℂ)
1501493ad2ant1 1082 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐴‘0) ∈ ℂ)
151150abscld 14175 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ∈ ℝ)
1521313ad2ant1 1082 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 ∈ ℝ)
153 prmz 15389 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
154153zred 11482 . . . . . 6 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ)
1551543ad2ant2 1083 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℝ)
156124adantr 481 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*)
157 fvex 6201 . . . . . . . . 9 (abs‘(𝐴‘0)) ∈ V
158157tpid1 4303 . . . . . . . 8 (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}
159 supxrub 12154 . . . . . . . 8 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ* ∧ (abs‘(𝐴‘0)) ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
160156, 158, 159sylancl 694 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
161160, 115syl6breqr 4695 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (abs‘(𝐴‘0)) ≤ 𝑇)
1621613adant3 1081 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) ≤ 𝑇)
163 simp3 1063 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑇 < 𝑝)
164151, 152, 155, 162, 163lelttrd 10195 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝐴‘0)) < 𝑝)
1651303ad2ant1 1082 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ∈ ℝ)
1661373ad2ant1 1082 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) ≤ 𝑇)
167165, 152, 155, 166, 163lelttrd 10195 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (!‘𝑀) < 𝑝)
16828a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)))))
16934a1i 11 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → 𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))))
170 oveq2 6658 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → ((𝑀↑(𝑀 + 1))↑𝑛) = ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)))
171 fveq2 6191 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (!‘𝑛) = (!‘(𝑝 − 1)))
172170, 171oveq12d 6668 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛)) = (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))))
173169, 172oveq12d 6668 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
174173adantl 482 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑛 = (𝑝 − 1)) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
175 prmnn 15388 . . . . . . . . . 10 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
176 nnm1nn0 11334 . . . . . . . . . 10 (𝑝 ∈ ℕ → (𝑝 − 1) ∈ ℕ0)
177175, 176syl 17 . . . . . . . . 9 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℕ0)
178177adantl 482 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (𝑝 − 1) ∈ ℕ0)
17958adantr 481 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℂ)
18054adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℂ)
181180, 178expcld 13008 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℂ)
182177faccld 13071 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℕ)
183182nncnd 11036 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℂ)
184183adantl 482 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℂ)
185182nnne0d 11065 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ≠ 0)
186185adantl 482 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ≠ 0)
187181, 184, 186divcld 10801 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℂ)
188179, 187mulcld 10060 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℂ)
189168, 174, 178, 188fvmptd 6288 . . . . . . 7 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
190189eqcomd 2628 . . . . . 6 ((𝜑𝑝 ∈ ℙ) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1911903adant3 1081 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) = (𝑆‘(𝑝 − 1)))
1921123ad2ant1 1082 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℤ)
193 1zzd 11408 . . . . . . . . . . 11 (𝑝 ∈ ℙ → 1 ∈ ℤ)
194153, 193zsubcld 11487 . . . . . . . . . 10 (𝑝 ∈ ℙ → (𝑝 − 1) ∈ ℤ)
1951943ad2ant2 1083 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ ℤ)
196192zred 11482 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ ℝ)
197 tpid3g 4305 . . . . . . . . . . . . . . 15 (𝐼 ∈ ℤ → 𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
198112, 197syl 17 . . . . . . . . . . . . . 14 (𝜑𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼})
199 supxrub 12154 . . . . . . . . . . . . . 14 (({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼} ⊆ ℝ*𝐼 ∈ {(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}) → 𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
200124, 198, 199syl2anc 693 . . . . . . . . . . . . 13 (𝜑𝐼 ≤ sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < ))
201200, 115syl6breqr 4695 . . . . . . . . . . . 12 (𝜑𝐼𝑇)
2022013ad2ant1 1082 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼𝑇)
203196, 152, 155, 202, 163lelttrd 10195 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 < 𝑝)
2041533ad2ant2 1083 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝑝 ∈ ℤ)
205 zltlem1 11430 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
206192, 204, 205syl2anc 693 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 < 𝑝𝐼 ≤ (𝑝 − 1)))
207203, 206mpbid 222 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ≤ (𝑝 − 1))
208 eluz2 11693 . . . . . . . . 9 ((𝑝 − 1) ∈ (ℤ𝐼) ↔ (𝐼 ∈ ℤ ∧ (𝑝 − 1) ∈ ℤ ∧ 𝐼 ≤ (𝑝 − 1)))
209192, 195, 207, 208syl3anbrc 1246 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑝 − 1) ∈ (ℤ𝐼))
2101113ad2ant1 1082 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1})
211 fveq2 6191 . . . . . . . . . . . 12 (𝑖 = 𝐼 → (ℤ𝑖) = (ℤ𝐼))
212211raleqdv 3144 . . . . . . . . . . 11 (𝑖 = 𝐼 → (∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1 ↔ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
213212elrab 3363 . . . . . . . . . 10 (𝐼 ∈ {𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1} ↔ (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
214210, 213sylib 208 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝐼 ∈ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1))
215214simprd 479 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1)
216 nfcv 2764 . . . . . . . . . . 11 𝑛abs
217 nfcv 2764 . . . . . . . . . . . 12 𝑛(𝑝 − 1)
21830, 217nffv 6198 . . . . . . . . . . 11 𝑛(𝑆‘(𝑝 − 1))
219216, 218nffv 6198 . . . . . . . . . 10 𝑛(abs‘(𝑆‘(𝑝 − 1)))
220 nfcv 2764 . . . . . . . . . 10 𝑛 <
221 nfcv 2764 . . . . . . . . . 10 𝑛1
222219, 220, 221nfbr 4699 . . . . . . . . 9 𝑛(abs‘(𝑆‘(𝑝 − 1))) < 1
223 fveq2 6191 . . . . . . . . . . 11 (𝑛 = (𝑝 − 1) → (𝑆𝑛) = (𝑆‘(𝑝 − 1)))
224223fveq2d 6195 . . . . . . . . . 10 (𝑛 = (𝑝 − 1) → (abs‘(𝑆𝑛)) = (abs‘(𝑆‘(𝑝 − 1))))
225224breq1d 4663 . . . . . . . . 9 (𝑛 = (𝑝 − 1) → ((abs‘(𝑆𝑛)) < 1 ↔ (abs‘(𝑆‘(𝑝 − 1))) < 1))
226222, 225rspc 3303 . . . . . . . 8 ((𝑝 − 1) ∈ (ℤ𝐼) → (∀𝑛 ∈ (ℤ𝐼)(abs‘(𝑆𝑛)) < 1 → (abs‘(𝑆‘(𝑝 − 1))) < 1))
227209, 215, 226sylc 65 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (abs‘(𝑆‘(𝑝 − 1))) < 1)
228172oveq2d 6666 . . . . . . . . . . . 12 (𝑛 = (𝑝 − 1) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
229228adantl 482 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑛 = (𝑝 − 1)) → (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
230 ovexd 6680 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ V)
231168, 229, 178, 230fvmptd 6288 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) = (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))))
23215nn0red 11352 . . . . . . . . . . . . . . . . 17 (𝜑𝑀 ∈ ℝ)
233232, 53reexpcld 13025 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀↑(𝑀 + 1)) ∈ ℝ)
234232, 233remulcld 10070 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
235234adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑀 · (𝑀↑(𝑀 + 1))) ∈ ℝ)
23649, 235remulcld 10070 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0...𝑀)) → ((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23735, 236fsumrecl 14465 . . . . . . . . . . . . 13 (𝜑 → Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) ∈ ℝ)
23834, 237syl5eqel 2705 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
239238adantr 481 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → 𝐶 ∈ ℝ)
240233adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ℙ) → (𝑀↑(𝑀 + 1)) ∈ ℝ)
241240, 178reexpcld 13025 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → ((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) ∈ ℝ)
242182nnred 11035 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → (!‘(𝑝 − 1)) ∈ ℝ)
243242adantl 482 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ℙ) → (!‘(𝑝 − 1)) ∈ ℝ)
244241, 243, 186redivcld 10853 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ℙ) → (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1))) ∈ ℝ)
245239, 244remulcld 10070 . . . . . . . . . 10 ((𝜑𝑝 ∈ ℙ) → (𝐶 · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) ∈ ℝ)
246231, 245eqeltrd 2701 . . . . . . . . 9 ((𝜑𝑝 ∈ ℙ) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
2472463adant3 1081 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) ∈ ℝ)
248 1red 10055 . . . . . . . 8 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → 1 ∈ ℝ)
249247, 248absltd 14168 . . . . . . 7 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ((abs‘(𝑆‘(𝑝 − 1))) < 1 ↔ (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1)))
250227, 249mpbid 222 . . . . . 6 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (-1 < (𝑆‘(𝑝 − 1)) ∧ (𝑆‘(𝑝 − 1)) < 1))
251250simprd 479 . . . . 5 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (𝑆‘(𝑝 − 1)) < 1)
252191, 251eqbrtrd 4675 . . . 4 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑝 − 1)) / (!‘(𝑝 − 1)))) < 1)
253 etransclem6 40457 . . . 4 (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝))) = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑝 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑝)))
254 eqid 2622 . . . 4 Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥)
255 eqid 2622 . . . 4 𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1))) = (Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · ((𝑦 ∈ ℝ ↦ ((𝑦↑(𝑝 − 1)) · ∏𝑧 ∈ (1...𝑀)((𝑦𝑧)↑𝑝)))‘𝑥)) d𝑥) / (!‘(𝑝 − 1)))
256143, 145, 4, 147, 12, 148, 164, 167, 252, 253, 254, 255etransclem47 40498 . . 3 ((𝜑𝑝 ∈ ℙ ∧ 𝑇 < 𝑝) → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
257256rexlimdv3a 3033 . 2 (𝜑 → (∃𝑝 ∈ ℙ 𝑇 < 𝑝 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1)))
258142, 257mpd 15 1 (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  c0 3915  {csn 4177  {ctp 4181   class class class wbr 4653  cmpt 4729   Or wor 5034  wf 5884  cfv 5888  (class class class)co 6650  Fincfn 7955  supcsup 8346  infcinf 8347  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  cmin 10266  -cneg 10267   / cdiv 10684  cn 11020  0cn0 11292  cz 11377  cuz 11687  +crp 11832  (,)cioo 12175  ...cfz 12326  cexp 12860  !cfa 13060  abscabs 13974  cli 14215  Σcsu 14416  cprod 14635  eceu 14793  cprime 15385  citg 23387  0𝑝c0p 23436  Polycply 23940  coeffccoe 23942  degcdgr 23943  𝑐ccxp 24302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-prod 14636  df-ef 14798  df-e 14799  df-sin 14800  df-cos 14801  df-tan 14802  df-pi 14803  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631  df-dvn 23632  df-ply 23944  df-coe 23946  df-dgr 23947  df-log 24303  df-cxp 24304
This theorem is referenced by:  etransc  40500
  Copyright terms: Public domain W3C validator