Proof of Theorem esumrnmpt2
| Step | Hyp | Ref
| Expression |
| 1 | | nfrab1 3122 |
. . . . 5
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} |
| 2 | | esumrnmpt2.1 |
. . . . 5
⊢ (𝑦 = 𝐵 → 𝐶 = 𝐷) |
| 3 | | esumrnmpt2.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 4 | | ssrab2 3687 |
. . . . . . 7
⊢ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴) |
| 6 | 3, 5 | ssexd 4805 |
. . . . 5
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V) |
| 7 | 5 | sselda 3603 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 8 | | esumrnmpt2.3 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐷 ∈ (0[,]+∞)) |
| 9 | 7, 8 | syldan 487 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) |
| 10 | | esumrnmpt2.4 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 11 | 7, 10 | syldan 487 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ 𝑊) |
| 12 | | rabid 3116 |
. . . . . . . . 9
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ ¬ 𝐵 = ∅)) |
| 13 | 12 | simprbi 480 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ 𝐵 = ∅) |
| 14 | 13 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 = ∅) |
| 15 | | elsng 4191 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) |
| 16 | 11, 15 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → (𝐵 ∈ {∅} ↔ 𝐵 = ∅)) |
| 17 | 14, 16 | mtbird 315 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → ¬ 𝐵 ∈ {∅}) |
| 18 | 11, 17 | eldifd 3585 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝐵 ∈ (𝑊 ∖ {∅})) |
| 19 | | esumrnmpt2.6 |
. . . . . 6
⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) |
| 20 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑘𝐴 |
| 21 | 1, 20 | disjss1f 29386 |
. . . . . 6
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ⊆ 𝐴 → (Disj 𝑘 ∈ 𝐴 𝐵 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵)) |
| 22 | 5, 19, 21 | sylc 65 |
. . . . 5
⊢ (𝜑 → Disj 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐵) |
| 23 | 1, 2, 6, 9, 18, 22 | esumrnmpt 30114 |
. . . 4
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 24 | | nfv 1843 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 25 | | snex 4908 |
. . . . . . . . . . . 12
⊢ {∅}
∈ V |
| 26 | 25 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → {∅} ∈
V) |
| 27 | | velsn 4193 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {∅} ↔ 𝑦 = ∅) |
| 28 | 27 | biimpi 206 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
| 29 | 28 | adantl 482 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝑦 = ∅) |
| 30 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘𝜑 |
| 31 | | nfre1 3005 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 32 | 30, 31 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 33 | | nfv 1843 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘 𝑦 = ∅ |
| 34 | 32, 33 | nfan 1828 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) |
| 35 | | nfv 1843 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝐶 = 0 |
| 36 | | simpllr 799 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = ∅) |
| 37 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐵 = ∅) |
| 38 | 36, 37 | eqtr4d 2659 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑦 = 𝐵) |
| 39 | 38, 2 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 𝐷) |
| 40 | | simp-4l 806 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝜑) |
| 41 | | simplr 792 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝑘 ∈ 𝐴) |
| 42 | | esumrnmpt2.5 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) |
| 43 | 40, 41, 37, 42 | syl21anc 1325 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐷 = 0) |
| 44 | 39, 43 | eqtrd 2656 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧
∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) ∧ 𝑘 ∈ 𝐴) ∧ 𝐵 = ∅) → 𝐶 = 0) |
| 45 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 46 | 34, 35, 44, 45 | r19.29af2 3075 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 = ∅) → 𝐶 = 0) |
| 47 | 29, 46 | syldan 487 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 = 0) |
| 48 | | 0e0iccpnf 12283 |
. . . . . . . . . . . 12
⊢ 0 ∈
(0[,]+∞) |
| 49 | 47, 48 | syl6eqel 2709 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) ∧ 𝑦 ∈ {∅}) → 𝐶 ∈ (0[,]+∞)) |
| 50 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑦 |
| 51 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 52 | 51 | nfrn 5368 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 53 | 50, 52 | nfel 2777 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 54 | 30, 53 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) |
| 55 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵) |
| 56 | | rabid 3116 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↔ (𝑘 ∈ 𝐴 ∧ 𝐵 = ∅)) |
| 57 | 56 | simprbi 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} → 𝐵 = ∅) |
| 58 | 57 | ad2antlr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐵 = ∅) |
| 59 | 55, 58 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 = ∅) |
| 60 | 59, 27 | sylibr 224 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑦 ∈ {∅}) |
| 61 | | vex 3203 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
| 62 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 63 | 62 | elrnmpt 5372 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵)) |
| 64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 65 | 64 | biimpi 206 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 66 | 65 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝑦 = 𝐵) |
| 67 | 54, 60, 66 | r19.29af 3076 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝑦 ∈ {∅}) |
| 68 | 67 | ex 450 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) → 𝑦 ∈ {∅})) |
| 69 | 68 | ssrdv 3609 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) |
| 70 | 69 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅}) |
| 71 | 24, 26, 49, 70 | esummono 30116 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ Σ*𝑦 ∈ {∅}𝐶) |
| 72 | | 0ex 4790 |
. . . . . . . . . . . 12
⊢ ∅
∈ V |
| 73 | 72 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ∅ ∈
V) |
| 74 | 48 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → 0 ∈
(0[,]+∞)) |
| 75 | 46, 73, 74 | esumsn 30127 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ {∅}𝐶 = 0) |
| 76 | 71, 75 | breqtrd 4679 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 77 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 78 | | nfv 1843 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑦 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 79 | 31 | nfn 1784 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘 ¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ |
| 80 | | nfrab1 3122 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} |
| 81 | | nfcv 2764 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘∅ |
| 82 | | rabn0 3958 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ ↔ ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 83 | 82 | biimpi 206 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ≠ ∅ → ∃𝑘 ∈ 𝐴 𝐵 = ∅) |
| 84 | 83 | necon1bi 2822 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} = ∅) |
| 85 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝐵 = 𝐵 |
| 86 | 85 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → 𝐵 = 𝐵) |
| 87 | 79, 80, 81, 84, 86 | mpteq12df 4735 |
. . . . . . . . . . . . . . . 16
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ ∅ ↦ 𝐵)) |
| 88 | | mpt0 6021 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ∅ ↦ 𝐵) = ∅ |
| 89 | 87, 88 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) |
| 90 | 89 | rneqd 5353 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ran ∅) |
| 91 | | rn0 5377 |
. . . . . . . . . . . . . 14
⊢ ran
∅ = ∅ |
| 92 | 90, 91 | syl6eq 2672 |
. . . . . . . . . . . . 13
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) = ∅) |
| 93 | 78, 92 | esumeq1d 30097 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = Σ*𝑦 ∈ ∅𝐶) |
| 94 | | esumnul 30110 |
. . . . . . . . . . . 12
⊢
Σ*𝑦
∈ ∅𝐶 =
0 |
| 95 | 93, 94 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) |
| 96 | | 0le0 11110 |
. . . . . . . . . . 11
⊢ 0 ≤
0 |
| 97 | 95, 96 | syl6eqbr 4692 |
. . . . . . . . . 10
⊢ (¬
∃𝑘 ∈ 𝐴 𝐵 = ∅ → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 98 | 77, 97 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ ∃𝑘 ∈ 𝐴 𝐵 = ∅) → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 99 | 76, 98 | pm2.61dan 832 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0) |
| 100 | | ssrab2 3687 |
. . . . . . . . . . . . 13
⊢ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴 |
| 101 | 100 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ⊆ 𝐴) |
| 102 | 3, 101 | ssexd 4805 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V) |
| 103 | 80 | mptexgf 6485 |
. . . . . . . . . . 11
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 104 | | rnexg 7098 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 105 | 102, 103,
104 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 106 | 2 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| 107 | | simplll 798 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) |
| 108 | 101 | sselda 3603 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 109 | 108 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 110 | 109 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) |
| 111 | 107, 110,
8 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 112 | 106, 111 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 113 | 54, 112, 66 | r19.29af 3076 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 114 | 113 | ralrimiva 2966 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 115 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) |
| 116 | 115 | esumcl 30092 |
. . . . . . . . . 10
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∈ V ∧ ∀𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) →
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 117 | 105, 114,
116 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞)) |
| 118 | | elxrge0 12281 |
. . . . . . . . . 10
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) ↔
(Σ*𝑦
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 119 | 118 | simprbi 480 |
. . . . . . . . 9
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ (0[,]+∞) → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 120 | 117, 119 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 121 | 99, 120 | jca 554 |
. . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 122 | | iccssxr 12256 |
. . . . . . . . 9
⊢
(0[,]+∞) ⊆ ℝ* |
| 123 | 122, 117 | sseldi 3601 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) |
| 124 | 122, 48 | sselii 3600 |
. . . . . . . . 9
⊢ 0 ∈
ℝ* |
| 125 | 124 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℝ*) |
| 126 | | xrletri3 11985 |
. . . . . . . 8
⊢
((Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* ∧ 0 ∈
ℝ*) → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) |
| 127 | 123, 125,
126 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0 ↔ (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 ≤ 0 ∧ 0 ≤
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶))) |
| 128 | 121, 127 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 = 0) |
| 129 | 128 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 130 | 9 | ralrimiva 2966 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 131 | 1 | esumcl 30092 |
. . . . . . . . 9
⊢ (({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V ∧ ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 132 | 6, 130, 131 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ (0[,]+∞)) |
| 133 | 122, 132 | sseldi 3601 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈
ℝ*) |
| 134 | 23, 133 | eqeltrd 2701 |
. . . . . 6
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈
ℝ*) |
| 135 | | xaddid2 12073 |
. . . . . 6
⊢
(Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶 ∈ ℝ* → (0
+𝑒 Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 136 | 134, 135 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 137 | 129, 136 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) |
| 138 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝜑) |
| 139 | 57 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐵 = ∅) |
| 140 | 138, 108,
139, 42 | syl21anc 1325 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 = 0) |
| 141 | 140 | ralrimiva 2966 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) |
| 142 | 30, 141 | esumeq2d 30099 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0) |
| 143 | 80 | esum0 30111 |
. . . . . . . 8
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∈ V →
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) |
| 144 | 102, 143 | syl 17 |
. . . . . . 7
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}0 = 0) |
| 145 | 142, 144 | eqtrd 2656 |
. . . . . 6
⊢ (𝜑 → Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 = 0) |
| 146 | 145 | oveq1d 6665 |
. . . . 5
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 147 | | xaddid2 12073 |
. . . . . 6
⊢
(Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷 ∈ ℝ* → (0
+𝑒 Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 148 | 133, 147 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 149 | 146, 148 | eqtrd 2656 |
. . . 4
⊢ (𝜑 → (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) = Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷) |
| 150 | 23, 137, 149 | 3eqtr4d 2666 |
. . 3
⊢ (𝜑 → (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶) = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 151 | | nfv 1843 |
. . . 4
⊢
Ⅎ𝑦𝜑 |
| 152 | | nfcv 2764 |
. . . 4
⊢
Ⅎ𝑦ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 153 | 1 | mptexgf 6485 |
. . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ∈ V → (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 154 | | rnexg 7098 |
. . . . 5
⊢ ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 155 | 6, 153, 154 | 3syl 18 |
. . . 4
⊢ (𝜑 → ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∈ V) |
| 156 | | ssrin 3838 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ⊆ {∅} → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) |
| 157 | 69, 156 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) |
| 158 | | incom 3805 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ({∅} ∩ ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 159 | 13 | neqned 2801 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → 𝐵 ≠ ∅) |
| 160 | 159 | necomd 2849 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ∅ ≠ 𝐵) |
| 161 | 160 | neneqd 2799 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} → ¬ ∅ = 𝐵) |
| 162 | 161 | nrex 3000 |
. . . . . . . . 9
⊢ ¬
∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵 |
| 163 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) = (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 164 | 163 | elrnmpt 5372 |
. . . . . . . . . 10
⊢ (∅
∈ V → (∅ ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵)) |
| 165 | 72, 164 | ax-mp 5 |
. . . . . . . . 9
⊢ (∅
∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}∅ = 𝐵) |
| 166 | 162, 165 | mtbir 313 |
. . . . . . . 8
⊢ ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 167 | | disjsn 4246 |
. . . . . . . 8
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) = ∅ ↔ ¬
∅ ∈ ran (𝑘
∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 168 | 166, 167 | mpbir 221 |
. . . . . . 7
⊢ (ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ∩ {∅}) =
∅ |
| 169 | 158, 168 | eqtr3i 2646 |
. . . . . 6
⊢
({∅} ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅ |
| 170 | 157, 169 | syl6sseq 3651 |
. . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅) |
| 171 | | ss0 3974 |
. . . . 5
⊢ ((ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ⊆ ∅ → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) |
| 172 | 170, 171 | syl 17 |
. . . 4
⊢ (𝜑 → (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∩ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = ∅) |
| 173 | | nfmpt1 4747 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 174 | 173 | nfrn 5368 |
. . . . . . 7
⊢
Ⅎ𝑘ran
(𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 175 | 50, 174 | nfel 2777 |
. . . . . 6
⊢
Ⅎ𝑘 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) |
| 176 | 30, 175 | nfan 1828 |
. . . . 5
⊢
Ⅎ𝑘(𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 177 | 2 | adantl 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐷) |
| 178 | | simplll 798 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝜑) |
| 179 | 7 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) → 𝑘 ∈ 𝐴) |
| 180 | 179 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝑘 ∈ 𝐴) |
| 181 | 178, 180,
8 | syl2anc 693 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐷 ∈ (0[,]+∞)) |
| 182 | 177, 181 | eqeltrd 2701 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ∧ 𝑦 = 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 183 | 163 | elrnmpt 5372 |
. . . . . . . 8
⊢ (𝑦 ∈ V → (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵)) |
| 184 | 61, 183 | ax-mp 5 |
. . . . . . 7
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) ↔ ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 185 | 184 | biimpi 206 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 186 | 185 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → ∃𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝑦 = 𝐵) |
| 187 | 176, 182,
186 | r19.29af 3076 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 188 | 151, 115,
152, 105, 155, 172, 113, 187 | esumsplit 30115 |
. . 3
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = (Σ*𝑦 ∈ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵)𝐶 +𝑒
Σ*𝑦 ∈
ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)𝐶)) |
| 189 | | rabnc 3962 |
. . . . 5
⊢ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅ |
| 190 | 189 | a1i 11 |
. . . 4
⊢ (𝜑 → ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∩ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) = ∅) |
| 191 | 108, 8 | syldan 487 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}) → 𝐷 ∈ (0[,]+∞)) |
| 192 | 30, 80, 1, 102, 6, 190, 191, 9 | esumsplit 30115 |
. . 3
⊢ (𝜑 → Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷 = (Σ*𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅}𝐷 +𝑒
Σ*𝑘 ∈
{𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}𝐷)) |
| 193 | 150, 188,
192 | 3eqtr4d 2666 |
. 2
⊢ (𝜑 → Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) |
| 194 | | rabxm 3961 |
. . . . . . . 8
⊢ 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) |
| 195 | 194, 85 | mpteq12i 4742 |
. . . . . . 7
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) |
| 196 | | mptun 6025 |
. . . . . . 7
⊢ (𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅}) ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 197 | 195, 196 | eqtri 2644 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 198 | 197 | rneqi 5352 |
. . . . 5
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = ran ((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 199 | | rnun 5541 |
. . . . 5
⊢ ran
((𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 200 | 198, 199 | eqtri 2644 |
. . . 4
⊢ ran
(𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵)) |
| 201 | 200 | a1i 11 |
. . 3
⊢ (𝜑 → ran (𝑘 ∈ 𝐴 ↦ 𝐵) = (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))) |
| 202 | 151, 201 | esumeq1d 30097 |
. 2
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑦 ∈ (ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ↦ 𝐵) ∪ ran (𝑘 ∈ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅} ↦ 𝐵))𝐶) |
| 203 | 194 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})) |
| 204 | 30, 203 | esumeq1d 30097 |
. 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐷 = Σ*𝑘 ∈ ({𝑘 ∈ 𝐴 ∣ 𝐵 = ∅} ∪ {𝑘 ∈ 𝐴 ∣ ¬ 𝐵 = ∅})𝐷) |
| 205 | 193, 202,
204 | 3eqtr4d 2666 |
1
⊢ (𝜑 → Σ*𝑦 ∈ ran (𝑘 ∈ 𝐴 ↦ 𝐵)𝐶 = Σ*𝑘 ∈ 𝐴𝐷) |