| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 2 | | ioodvbdlimc1lem1.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
| 3 | | cncff 22696 |
. . . . . 6
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 4 | 2, 3 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 5 | 4 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 6 | | ioodvbdlimc1lem1.r |
. . . . 5
⊢ (𝜑 → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 7 | 6 | ffvelrnda 6359 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝑅‘𝑗) ∈ (𝐴(,)𝐵)) |
| 8 | 5, 7 | ffvelrnd 6360 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑅‘𝑗)) ∈ ℝ) |
| 9 | | ioodvbdlimc1lem1.s |
. . 3
⊢ 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗))) |
| 10 | 8, 9 | fmptd 6385 |
. 2
⊢ (𝜑 → 𝑆:(ℤ≥‘𝑀)⟶ℝ) |
| 11 | | ssrab2 3687 |
. . . . 5
⊢ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) |
| 12 | | ioodvbdlimc1lem1.k |
. . . . . 6
⊢ 𝐾 = inf({𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, <
) |
| 13 | | rpre 11839 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 14 | 13 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 15 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → ((ℝ D 𝐹)‘𝑧) = ((ℝ D 𝐹)‘𝑥)) |
| 16 | 15 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑧)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
| 17 | 16 | cbvmptv 4750 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 18 | 17 | rneqi 5352 |
. . . . . . . . . . . . . . 15
⊢ ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))) = ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 19 | 18 | supeq1i 8353 |
. . . . . . . . . . . . . 14
⊢ sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 20 | | ioodvbdlimc1lem1.a |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 21 | | ioodvbdlimc1lem1.b |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 22 | | ioodvbdlimc1lem1.altb |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 < 𝐵) |
| 23 | | ioomidp 39740 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
| 24 | 20, 21, 22, 23 | syl3anc 1326 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵)) |
| 25 | | ne0i 3921 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) → (𝐴(,)𝐵) ≠ ∅) |
| 26 | 24, 25 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴(,)𝐵) ≠ ∅) |
| 27 | | ioossre 12235 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐴(,)𝐵) ⊆ ℝ |
| 28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℝ) |
| 29 | | dvfre 23714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(𝐴(,)𝐵)⟶ℝ ∧ (𝐴(,)𝐵) ⊆ ℝ) → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 30 | 4, 28, 29 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ) |
| 31 | | ioodvbdlimc1lem1.dmdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 32 | 31 | feq2d 6031 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((ℝ D 𝐹):dom (ℝ D 𝐹)⟶ℝ ↔ (ℝ
D 𝐹):(𝐴(,)𝐵)⟶ℝ)) |
| 33 | 30, 32 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℝ) |
| 34 | | ax-resscn 9993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ℝ
⊆ ℂ |
| 35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 36 | 33, 35 | fssd 6057 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶ℂ) |
| 37 | 36 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℂ) |
| 38 | 37 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑥)) ∈ ℝ) |
| 39 | | ioodvbdlimc1lem1.dvbd |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ 𝑦) |
| 40 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) = (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))) |
| 41 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ sup(ran
(𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) |
| 42 | 26, 38, 39, 40, 41 | suprnmpt 39355 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈ ℝ ∧
∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
| 43 | 42 | simpld 475 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ) ∈
ℝ) |
| 44 | 19, 43 | syl5eqel 2705 |
. . . . . . . . . . . . 13
⊢ (𝜑 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 46 | | peano2re 10209 |
. . . . . . . . . . . 12
⊢ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈ ℝ →
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 48 | | 0red 10041 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℝ) |
| 49 | | 1red 10055 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℝ) |
| 50 | 48, 49 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ∈
ℝ) |
| 51 | 44, 46 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 52 | 48 | ltp1d 10954 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < (0 +
1)) |
| 53 | 36, 24 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)) ∈ ℂ) |
| 54 | 53 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ∈ ℝ) |
| 55 | 53 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 0 ≤
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
| 56 | 42 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 57 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥)) |
| 58 | 57 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘𝑥))) |
| 59 | 19 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) = sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 60 | 58, 59 | breq12d 4666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑥 → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < ))) |
| 61 | 60 | cbvralv 3171 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
(𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔ ∀𝑥 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑥)) ≤ sup(ran (𝑥 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑥))), ℝ, < )) |
| 62 | 56, 61 | sylibr 224 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 63 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) |
| 64 | 63 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → (abs‘((ℝ D 𝐹)‘𝑦)) = (abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2)))) |
| 65 | 64 | breq1d 4663 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = ((𝐴 + 𝐵) / 2) → ((abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ↔
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ))) |
| 66 | 65 | rspcva 3307 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 + 𝐵) / 2) ∈ (𝐴(,)𝐵) ∧ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) →
(abs‘((ℝ D 𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 67 | 24, 62, 66 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (abs‘((ℝ D
𝐹)‘((𝐴 + 𝐵) / 2))) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 68 | 48, 54, 44, 55, 67 | letrd 10194 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 0 ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 69 | 48, 44, 49, 68 | leadd1dd 10641 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (0 + 1) ≤ (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 70 | 48, 50, 51, 52, 69 | ltletrd 10197 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 71 | 70 | gt0ne0d 10592 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
| 72 | 71 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (sup(ran
(𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ≠
0) |
| 73 | 14, 47, 72 | redivcld 10853 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 74 | | rpgt0 11844 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 0 < 𝑥) |
| 75 | 74 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
𝑥) |
| 76 | 70 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 77 | 14, 47, 75, 76 | divgt0d 10959 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 <
(𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 78 | 73, 77 | elrpd 11869 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+) |
| 79 | | ioodvbdlimc1lem1.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 80 | 79 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈
ℤ) |
| 81 | | ioodvbdlimc1lem1.rcnv |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ dom ⇝ ) |
| 82 | 81 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈ dom ⇝
) |
| 83 | 1 | climcau 14401 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ dom ⇝ ) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
| 84 | 80, 82, 83 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑤 ∈
ℝ+ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) |
| 85 | | breq2 4657 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 86 | 85 | rexralbidv 3058 |
. . . . . . . . . 10
⊢ (𝑤 = (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) →
(∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤 ↔ ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 87 | 86 | rspcva 3307 |
. . . . . . . . 9
⊢ (((𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ+ ∧ ∀𝑤 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < 𝑤) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 88 | 78, 84, 87 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 89 | | rabn0 3958 |
. . . . . . . 8
⊢ ({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅
↔ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 90 | 88, 89 | sylibr 224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠
∅) |
| 91 | | infssuzcl 11772 |
. . . . . . 7
⊢ (({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ⊆
(ℤ≥‘𝑀) ∧ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ≠ ∅)
→ inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 92 | 11, 90, 91 | sylancr 695 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
inf({𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}, ℝ, < )
∈ {𝑘 ∈
(ℤ≥‘𝑀) ∣ ∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 93 | 12, 92 | syl5eqel 2705 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))}) |
| 94 | 11, 93 | sseldi 3601 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐾 ∈
(ℤ≥‘𝑀)) |
| 95 | 9 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑆 = (𝑗 ∈ (ℤ≥‘𝑀) ↦ (𝐹‘(𝑅‘𝑗)))) |
| 96 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑖 → (𝑅‘𝑗) = (𝑅‘𝑖)) |
| 97 | 96 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝑖))) |
| 98 | 97 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ 𝑗 = 𝑖) → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝑖))) |
| 99 | | uzss 11708 |
. . . . . . . . . . 11
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
| 100 | 94, 99 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(ℤ≥‘𝐾) ⊆
(ℤ≥‘𝑀)) |
| 101 | 100 | sselda 3603 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑖 ∈ (ℤ≥‘𝑀)) |
| 102 | 4 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 103 | 6 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 104 | 103, 101 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
| 105 | 102, 104 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℝ) |
| 106 | 95, 98, 101, 105 | fvmptd 6288 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝑖) = (𝐹‘(𝑅‘𝑖))) |
| 107 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝐾 → (𝑅‘𝑗) = (𝑅‘𝐾)) |
| 108 | 107 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑗 = 𝐾 → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝐾))) |
| 109 | 108 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ 𝑗 = 𝐾) → (𝐹‘(𝑅‘𝑗)) = (𝐹‘(𝑅‘𝐾))) |
| 110 | 94 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 111 | 103, 110 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 112 | 102, 111 | ffvelrnd 6360 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℝ) |
| 113 | 95, 109, 110, 112 | fvmptd 6288 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑆‘𝐾) = (𝐹‘(𝑅‘𝐾))) |
| 114 | 106, 113 | oveq12d 6668 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑆‘𝑖) − (𝑆‘𝐾)) = ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) |
| 115 | 114 | fveq2d 6195 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) = (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))))) |
| 116 | 105 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
| 117 | 112 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
| 118 | 116, 117 | subcld 10392 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) ∈ ℂ) |
| 119 | 118 | abscld 14175 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 120 | 119 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 121 | 44 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 122 | 121 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 123 | 6 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅:(ℤ≥‘𝑀)⟶(𝐴(,)𝐵)) |
| 124 | 123, 94 | ffvelrnd 6360 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 125 | 27, 124 | sseldi 3601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈ ℝ) |
| 126 | 125 | ad2antrr 762 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 127 | 27, 104 | sseldi 3601 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 128 | 127 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 129 | 126, 128 | resubcld 10458 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈ ℝ) |
| 130 | 122, 129 | remulcld 10070 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
| 131 | 13 | ad3antlr 767 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝑥 ∈ ℝ) |
| 132 | 116 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝑖)) ∈ ℂ) |
| 133 | 117 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝐹‘(𝑅‘𝐾)) ∈ ℂ) |
| 134 | 132, 133 | abssubd 14192 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖))))) |
| 135 | 20 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐴 ∈ ℝ) |
| 136 | 21 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈ ℝ) |
| 137 | 102 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 138 | 31 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 139 | 62 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 140 | 104 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) |
| 141 | 127 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
| 142 | 141 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈
ℝ*) |
| 143 | 21 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 144 | 143 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐵 ∈
ℝ*) |
| 145 | 144 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 𝐵 ∈
ℝ*) |
| 146 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) < (𝑅‘𝐾)) |
| 147 | 20 | rexrd 10089 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 148 | 147 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈
ℝ*) |
| 149 | 143 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈
ℝ*) |
| 150 | | iooltub 39735 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) → (𝑅‘𝐾) < 𝐵) |
| 151 | 148, 149,
124, 150 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) < 𝐵) |
| 152 | 151 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) < 𝐵) |
| 153 | 142, 145,
126, 146, 152 | eliood 39720 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ((𝑅‘𝑖)(,)𝐵)) |
| 154 | 135, 136,
137, 138, 122, 139, 140, 153 | dvbdfbdioolem1 40143 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∧ (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
| 155 | 154 | simpld 475 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝑖)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 156 | 134, 155 | eqbrtrd 4675 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 157 | 122, 46 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 158 | 157, 129 | remulcld 10070 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) ∈ ℝ) |
| 159 | 128, 126 | posdifd 10614 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝑖) < (𝑅‘𝐾) ↔ 0 < ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 160 | 146, 159 | mpbid 222 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → 0 < ((𝑅‘𝐾) − (𝑅‘𝑖))) |
| 161 | 129, 160 | elrpd 11869 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ∈
ℝ+) |
| 162 | 122 | ltp1d 10954 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 163 | 122, 157,
161, 162 | ltmul1dd 11927 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 164 | 27, 111 | sseldi 3601 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 165 | 127, 164 | resubcld 10458 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
| 166 | 165 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℂ) |
| 167 | 166 | abscld 14175 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 168 | 167 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 169 | 73 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 170 | 129 | leabsd 14153 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝐾) − (𝑅‘𝑖)))) |
| 171 | 126 | recnd 10068 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℂ) |
| 172 | 127 | recnd 10068 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
| 173 | 172 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℂ) |
| 174 | 171, 173 | abssubd 14192 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝐾) − (𝑅‘𝑖))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 175 | 170, 174 | breqtrd 4679 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 176 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → (ℤ≥‘𝑘) =
(ℤ≥‘𝐾)) |
| 177 | | fveq2 6191 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝐾 → (𝑅‘𝑘) = (𝑅‘𝐾)) |
| 178 | 177 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝐾 → ((𝑅‘𝑖) − (𝑅‘𝑘)) = ((𝑅‘𝑖) − (𝑅‘𝐾))) |
| 179 | 178 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝐾 → (abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) = (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 180 | 179 | breq1d 4663 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝐾 → ((abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 181 | 176, 180 | raleqbidv 3152 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ↔
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 182 | 181 | elrab 3363 |
. . . . . . . . . . . . . . 15
⊢ (𝐾 ∈ {𝑘 ∈ (ℤ≥‘𝑀) ∣ ∀𝑖 ∈
(ℤ≥‘𝑘)(abs‘((𝑅‘𝑖) − (𝑅‘𝑘))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))} ↔ (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 183 | 93, 182 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 184 | 183 | simprd 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 185 | 184 | r19.21bi 2932 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 186 | 185 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 187 | 129, 168,
169, 175, 186 | lelttrd 10195 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 188 | 51, 70 | elrpd 11869 |
. . . . . . . . . . . 12
⊢ (𝜑 → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 189 | 188 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 190 | 129, 131,
189 | ltmuldiv2d 11920 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥 ↔ ((𝑅‘𝐾) − (𝑅‘𝑖)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 191 | 187, 190 | mpbird 247 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
| 192 | 130, 158,
131, 163, 191 | lttrd 10198 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝐾) − (𝑅‘𝑖))) < 𝑥) |
| 193 | 120, 130,
131, 156, 192 | lelttrd 10195 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 194 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → (𝐹‘(𝑅‘𝑖)) = (𝐹‘(𝑅‘𝐾))) |
| 195 | 194 | oveq1d 6665 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝑖) = (𝑅‘𝐾) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾)))) |
| 196 | 117 | subidd 10380 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → ((𝐹‘(𝑅‘𝐾)) − (𝐹‘(𝑅‘𝐾))) = 0) |
| 197 | 195, 196 | sylan9eqr 2678 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾))) = 0) |
| 198 | 197 | abs00bd 14031 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) = 0) |
| 199 | 74 | ad3antlr 767 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → 0 < 𝑥) |
| 200 | 198, 199 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 201 | 200 | adantlr 751 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 202 | | simpll 790 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾))) |
| 203 | 164 | ad2antrr 762 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ∈ ℝ) |
| 204 | 127 | ad2antrr 762 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝑖) ∈ ℝ) |
| 205 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝐾) = (𝑅‘𝑖)) |
| 206 | 205 | eqcomd 2628 |
. . . . . . . . . . . 12
⊢ ((𝑅‘𝐾) = (𝑅‘𝑖) → (𝑅‘𝑖) = (𝑅‘𝐾)) |
| 207 | 206 | necon3bi 2820 |
. . . . . . . . . . 11
⊢ (¬
(𝑅‘𝑖) = (𝑅‘𝐾) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
| 208 | 207 | adantl 482 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) ≠ (𝑅‘𝑖)) |
| 209 | | simplr 792 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) |
| 210 | 203, 204,
208, 209 | lttri5d 39513 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
| 211 | 119 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ∈ ℝ) |
| 212 | 121, 165 | remulcld 10070 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 213 | 212 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 214 | 13 | ad3antlr 767 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝑥 ∈ ℝ) |
| 215 | 20 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐴 ∈ ℝ) |
| 216 | 21 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈ ℝ) |
| 217 | 102 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
| 218 | 31 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 219 | 44 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) ∈
ℝ) |
| 220 | 62 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘((ℝ D 𝐹)‘𝑦)) ≤ sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < )) |
| 221 | 111 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ (𝐴(,)𝐵)) |
| 222 | 125 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅‘𝐾) ∈
ℝ*) |
| 223 | 222 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈
ℝ*) |
| 224 | 216 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 𝐵 ∈
ℝ*) |
| 225 | 127 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ℝ) |
| 226 | | simpr 477 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) < (𝑅‘𝑖)) |
| 227 | 147 | ad2antrr 762 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → 𝐴 ∈
ℝ*) |
| 228 | | iooltub 39735 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑅‘𝑖) ∈ (𝐴(,)𝐵)) → (𝑅‘𝑖) < 𝐵) |
| 229 | 227, 144,
104, 228 | syl3anc 1326 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (𝑅‘𝑖) < 𝐵) |
| 230 | 229 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) < 𝐵) |
| 231 | 223, 224,
225, 226, 230 | eliood 39720 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝑖) ∈ ((𝑅‘𝐾)(,)𝐵)) |
| 232 | 215, 216,
217, 218, 219, 220, 221, 231 | dvbdfbdioolem1 40143 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∧ (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · (𝐵 − 𝐴)))) |
| 233 | 232 | simpld 475 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) ≤ (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 234 | | 1red 10055 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 1 ∈ ℝ) |
| 235 | 219, 234 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 236 | 164 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑅‘𝐾) ∈ ℝ) |
| 237 | 225, 236 | resubcld 10458 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈ ℝ) |
| 238 | 235, 237 | remulcld 10070 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 239 | 219, 46 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ) |
| 240 | 236, 225 | posdifd 10614 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝐾) < (𝑅‘𝑖) ↔ 0 < ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 241 | 226, 240 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → 0 < ((𝑅‘𝑖) − (𝑅‘𝐾))) |
| 242 | 237, 241 | elrpd 11869 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ∈
ℝ+) |
| 243 | 219 | ltp1d 10954 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) < (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) |
| 244 | 219, 239,
242, 243 | ltmul1dd 11927 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 245 | 167 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) ∈ ℝ) |
| 246 | 73 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)) ∈
ℝ) |
| 247 | 237 | leabsd 14153 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) ≤ (abs‘((𝑅‘𝑖) − (𝑅‘𝐾)))) |
| 248 | 185 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝑅‘𝑖) − (𝑅‘𝐾))) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 249 | 237, 245,
246, 247, 248 | lelttrd 10195 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1))) |
| 250 | 188 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) ∈
ℝ+) |
| 251 | 237, 214,
250 | ltmuldiv2d 11920 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥 ↔ ((𝑅‘𝑖) − (𝑅‘𝐾)) < (𝑥 / (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1)))) |
| 252 | 249, 251 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → ((sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) + 1) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
| 253 | 213, 238,
214, 244, 252 | lttrd 10198 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (sup(ran (𝑧 ∈ (𝐴(,)𝐵) ↦ (abs‘((ℝ D 𝐹)‘𝑧))), ℝ, < ) · ((𝑅‘𝑖) − (𝑅‘𝐾))) < 𝑥) |
| 254 | 211, 213,
214, 233, 253 | lelttrd 10195 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ (𝑅‘𝐾) < (𝑅‘𝑖)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 255 | 202, 210,
254 | syl2anc 693 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑥 ∈ ℝ+)
∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) ∧ ¬ (𝑅‘𝑖) = (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 256 | 201, 255 | pm2.61dan 832 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) ∧ ¬ (𝑅‘𝑖) < (𝑅‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 257 | 193, 256 | pm2.61dan 832 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝐹‘(𝑅‘𝑖)) − (𝐹‘(𝑅‘𝐾)))) < 𝑥) |
| 258 | 115, 257 | eqbrtrd 4675 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑖 ∈
(ℤ≥‘𝐾)) → (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
| 259 | 258 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∀𝑖 ∈
(ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) |
| 260 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (𝑆‘𝑘) = (𝑆‘𝐾)) |
| 261 | 260 | oveq2d 6666 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → ((𝑆‘𝑖) − (𝑆‘𝑘)) = ((𝑆‘𝑖) − (𝑆‘𝐾))) |
| 262 | 261 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) = (abs‘((𝑆‘𝑖) − (𝑆‘𝐾)))) |
| 263 | 262 | breq1d 4663 |
. . . . . 6
⊢ (𝑘 = 𝐾 → ((abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ (abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
| 264 | 176, 263 | raleqbidv 3152 |
. . . . 5
⊢ (𝑘 = 𝐾 → (∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥 ↔ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥)) |
| 265 | 264 | rspcev 3309 |
. . . 4
⊢ ((𝐾 ∈
(ℤ≥‘𝑀) ∧ ∀𝑖 ∈ (ℤ≥‘𝐾)(abs‘((𝑆‘𝑖) − (𝑆‘𝐾))) < 𝑥) → ∃𝑘 ∈ (ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 266 | 94, 259, 265 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 267 | 266 | ralrimiva 2966 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑘 ∈
(ℤ≥‘𝑀)∀𝑖 ∈ (ℤ≥‘𝑘)(abs‘((𝑆‘𝑖) − (𝑆‘𝑘))) < 𝑥) |
| 268 | 1, 10, 267 | caurcvg 14407 |
1
⊢ (𝜑 → 𝑆 ⇝ (lim sup‘𝑆)) |