| Step | Hyp | Ref
| Expression |
| 1 | | reex 10027 |
. . . . 5
⊢ ℝ
∈ V |
| 2 | | elssuni 4467 |
. . . . . 6
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆ ∪ (topGen‘ran (,))) |
| 3 | | uniretop 22566 |
. . . . . 6
⊢ ℝ =
∪ (topGen‘ran (,)) |
| 4 | 2, 3 | syl6sseqr 3652 |
. . . . 5
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ⊆
ℝ) |
| 5 | | ssdomg 8001 |
. . . . 5
⊢ (ℝ
∈ V → (𝐴 ⊆
ℝ → 𝐴 ≼
ℝ)) |
| 6 | 1, 4, 5 | mpsyl 68 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ≼
ℝ) |
| 7 | | rpnnen 14956 |
. . . 4
⊢ ℝ
≈ 𝒫 ℕ |
| 8 | | domentr 8015 |
. . . 4
⊢ ((𝐴 ≼ ℝ ∧ ℝ
≈ 𝒫 ℕ) → 𝐴 ≼ 𝒫 ℕ) |
| 9 | 6, 7, 8 | sylancl 694 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ 𝐴 ≼ 𝒫
ℕ) |
| 10 | 9 | adantr 481 |
. 2
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ 𝐴 ≼ 𝒫
ℕ) |
| 11 | | n0 3931 |
. . . 4
⊢ (𝐴 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
| 12 | 4 | sselda 3603 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
| 13 | | rpnnen2 14955 |
. . . . . . . . . . . . 13
⊢ 𝒫
ℕ ≼ (0[,]1) |
| 14 | | rphalfcl 11858 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ+) |
| 15 | 14 | rpred 11872 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ℝ+
→ (𝑦 / 2) ∈
ℝ) |
| 16 | | resubcl 10345 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) →
(𝑥 − (𝑦 / 2)) ∈
ℝ) |
| 17 | 15, 16 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) ∈
ℝ) |
| 18 | | readdcl 10019 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈ ℝ) →
(𝑥 + (𝑦 / 2)) ∈ ℝ) |
| 19 | 15, 18 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) ∈
ℝ) |
| 20 | | simpl 473 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 ∈
ℝ) |
| 21 | | ltsubrp 11866 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈
ℝ+) → (𝑥 − (𝑦 / 2)) < 𝑥) |
| 22 | 14, 21 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) < 𝑥) |
| 23 | | ltaddrp 11867 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ (𝑦 / 2) ∈
ℝ+) → 𝑥 < (𝑥 + (𝑦 / 2))) |
| 24 | 14, 23 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 < (𝑥 + (𝑦 / 2))) |
| 25 | 17, 20, 19, 22, 24 | lttrd 10198 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) |
| 26 | | iccen 12317 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 − (𝑦 / 2)) ∈ ℝ ∧ (𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑥 − (𝑦 / 2)) < (𝑥 + (𝑦 / 2))) → (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
| 27 | 17, 19, 25, 26 | syl3anc 1326 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (0[,]1) ≈ ((𝑥
− (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
| 28 | | domentr 8015 |
. . . . . . . . . . . . 13
⊢
((𝒫 ℕ ≼ (0[,]1) ∧ (0[,]1) ≈ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) → 𝒫 ℕ ≼
((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
| 29 | 13, 27, 28 | sylancr 695 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2)))) |
| 30 | | ovex 6678 |
. . . . . . . . . . . . 13
⊢ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ∈ V |
| 31 | | rpre 11839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℝ) |
| 32 | | resubcl 10345 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ) |
| 33 | 31, 32 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) ∈
ℝ) |
| 34 | 33 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) ∈
ℝ*) |
| 35 | | readdcl 10019 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 36 | 31, 35 | sylan2 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + 𝑦) ∈
ℝ) |
| 37 | 36 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + 𝑦) ∈
ℝ*) |
| 38 | 20 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑥 ∈
ℂ) |
| 39 | 15 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℝ) |
| 40 | 39 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℂ) |
| 41 | 38, 40, 40 | subsub4d 10423 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − ((𝑦 / 2) + (𝑦 / 2)))) |
| 42 | 31 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑦 ∈
ℝ) |
| 43 | 42 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝑦 ∈
ℂ) |
| 44 | 43 | 2halvesd 11278 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
| 45 | 44 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 − 𝑦)) |
| 46 | 41, 45 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) = (𝑥 − 𝑦)) |
| 47 | 14 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑦 / 2) ∈
ℝ+) |
| 48 | 17, 47 | ltsubrpd 11904 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2)) − (𝑦 / 2)) < (𝑥 − (𝑦 / 2))) |
| 49 | 46, 48 | eqbrtrrd 4677 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 − 𝑦) < (𝑥 − (𝑦 / 2))) |
| 50 | | ltaddrp 11867 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑥 + (𝑦 / 2)) ∈ ℝ ∧ (𝑦 / 2) ∈
ℝ+) → (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2))) |
| 51 | 19, 47, 50 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) < ((𝑥 + (𝑦 / 2)) + (𝑦 / 2))) |
| 52 | 38, 40, 40 | addassd 10062 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + ((𝑦 / 2) + (𝑦 / 2)))) |
| 53 | 44 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + ((𝑦 / 2) + (𝑦 / 2))) = (𝑥 + 𝑦)) |
| 54 | 52, 53 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 + (𝑦 / 2)) + (𝑦 / 2)) = (𝑥 + 𝑦)) |
| 55 | 51, 54 | breqtrd 4679 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦)) |
| 56 | | iccssioo 12242 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 − 𝑦) ∈ ℝ* ∧ (𝑥 + 𝑦) ∈ ℝ*) ∧ ((𝑥 − 𝑦) < (𝑥 − (𝑦 / 2)) ∧ (𝑥 + (𝑦 / 2)) < (𝑥 + 𝑦))) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 57 | 34, 37, 49, 55, 56 | syl22anc 1327 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 58 | | ssdomg 8001 |
. . . . . . . . . . . . 13
⊢ (((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) ∈ V → (((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ⊆ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)) → ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦)))) |
| 59 | 30, 57, 58 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 60 | | domtr 8009 |
. . . . . . . . . . . 12
⊢
((𝒫 ℕ ≼ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ∧ ((𝑥 − (𝑦 / 2))[,](𝑥 + (𝑦 / 2))) ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) → 𝒫 ℕ ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 61 | 29, 59, 60 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 62 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 63 | 62 | bl2ioo 22595 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 64 | 31, 63 | sylan2 491 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ (𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑦) = ((𝑥 − 𝑦)(,)(𝑥 + 𝑦))) |
| 65 | 61, 64 | breqtrrd 4681 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ+)
→ 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦)) |
| 66 | 12, 65 | sylan 488 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) → 𝒫
ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦)) |
| 67 | 66 | adantr 481 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦)) |
| 68 | | simplll 798 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝐴 ∈ (topGen‘ran
(,))) |
| 69 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ⊆ 𝐴) |
| 70 | | ssdomg 8001 |
. . . . . . . . 9
⊢ (𝐴 ∈ (topGen‘ran (,))
→ ((𝑥(ball‘((abs
∘ − ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴 → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴)) |
| 71 | 68, 69, 70 | sylc 65 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴) |
| 72 | | domtr 8009 |
. . . . . . . 8
⊢
((𝒫 ℕ ≼ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ∧ (𝑥(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑦) ≼ 𝐴) → 𝒫 ℕ ≼ 𝐴) |
| 73 | 67, 71, 72 | syl2anc 693 |
. . . . . . 7
⊢ ((((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) → 𝒫 ℕ ≼ 𝐴) |
| 74 | | eqid 2622 |
. . . . . . . . . 10
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
| 75 | 62, 74 | tgioo 22599 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
| 76 | 75 | eleq2i 2693 |
. . . . . . . 8
⊢ (𝐴 ∈ (topGen‘ran (,))
↔ 𝐴 ∈
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ)))) |
| 77 | 62 | rexmet 22594 |
. . . . . . . . 9
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
| 78 | 74 | mopni2 22298 |
. . . . . . . . 9
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ 𝐴 ∈ (MetOpen‘((abs ∘ −
) ↾ (ℝ × ℝ))) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
| 79 | 77, 78 | mp3an1 1411 |
. . . . . . . 8
⊢ ((𝐴 ∈ (MetOpen‘((abs
∘ − ) ↾ (ℝ × ℝ))) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
| 80 | 76, 79 | sylanb 489 |
. . . . . . 7
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ+
(𝑥(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑦) ⊆ 𝐴) |
| 81 | 73, 80 | r19.29a 3078 |
. . . . . 6
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝑥 ∈ 𝐴) → 𝒫 ℕ
≼ 𝐴) |
| 82 | 81 | ex 450 |
. . . . 5
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (𝑥 ∈ 𝐴 → 𝒫 ℕ
≼ 𝐴)) |
| 83 | 82 | exlimdv 1861 |
. . . 4
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (∃𝑥 𝑥 ∈ 𝐴 → 𝒫 ℕ ≼ 𝐴)) |
| 84 | 11, 83 | syl5bi 232 |
. . 3
⊢ (𝐴 ∈ (topGen‘ran (,))
→ (𝐴 ≠ ∅
→ 𝒫 ℕ ≼ 𝐴)) |
| 85 | 84 | imp 445 |
. 2
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ 𝒫 ℕ ≼ 𝐴) |
| 86 | | sbth 8080 |
. 2
⊢ ((𝐴 ≼ 𝒫 ℕ ∧
𝒫 ℕ ≼ 𝐴) → 𝐴 ≈ 𝒫 ℕ) |
| 87 | 10, 85, 86 | syl2anc 693 |
1
⊢ ((𝐴 ∈ (topGen‘ran (,))
∧ 𝐴 ≠ ∅)
→ 𝐴 ≈ 𝒫
ℕ) |