Step | Hyp | Ref
| Expression |
1 | | decpmatmulsumfsupp.0 |
. . . 4
⊢ 0 =
(0g‘𝐴) |
2 | | fvex 6201 |
. . . 4
⊢
(0g‘𝐴) ∈ V |
3 | 1, 2 | eqeltri 2697 |
. . 3
⊢ 0 ∈
V |
4 | 3 | a1i 11 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 ∈ V) |
5 | | ovexd 6680 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))))) ∈ V) |
6 | | oveq2 6658 |
. . . 4
⊢ (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛)) |
7 | | oveq1 6657 |
. . . . . 6
⊢ (𝑙 = 𝑛 → (𝑙 − 𝑘) = (𝑛 − 𝑘)) |
8 | 7 | oveq2d 6666 |
. . . . 5
⊢ (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙 − 𝑘)) = (𝑦 decompPMat (𝑛 − 𝑘))) |
9 | 8 | oveq2d 6666 |
. . . 4
⊢ (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))) = ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))) |
10 | 6, 9 | mpteq12dv 4733 |
. . 3
⊢ (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) |
11 | 10 | oveq2d 6666 |
. 2
⊢ (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))))) |
12 | | simpll 790 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ Fin) |
13 | | simplr 792 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
14 | | decpmatmul.p |
. . . . . . . . 9
⊢ 𝑃 = (Poly1‘𝑅) |
15 | | decpmatmul.c |
. . . . . . . . 9
⊢ 𝐶 = (𝑁 Mat 𝑃) |
16 | 14, 15 | pmatring 20498 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
17 | 16 | anim1i 592 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
18 | | 3anass 1042 |
. . . . . . 7
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
19 | 17, 18 | sylibr 224 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
20 | | decpmatmul.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐶) |
21 | | eqid 2622 |
. . . . . . 7
⊢
(.r‘𝐶) = (.r‘𝐶) |
22 | 20, 21 | ringcl 18561 |
. . . . . 6
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
23 | 19, 22 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
24 | | eqid 2622 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
25 | 14, 15, 20, 24 | pmatcoe1fsupp 20506 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
26 | 12, 13, 23, 25 | syl3anc 1326 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
27 | | oveq1 6657 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑖 → (𝑎(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) |
28 | 27 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))) |
29 | 28 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛)) |
30 | 29 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
31 | | oveq2 6658 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑗 → (𝑖(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑗)) |
32 | 31 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))) |
33 | 32 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) |
34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
35 | 30, 34 | rspc2va 3323 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
36 | 35 | expcom 451 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
37 | 36 | adantl 482 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
38 | 37 | 3impib 1262 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
39 | 38 | mpt2eq3dva 6719 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
40 | | decpmatmul.a |
. . . . . . . . . . . 12
⊢ 𝐴 = (𝑁 Mat 𝑅) |
41 | 40, 24 | mat0op 20225 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
42 | 1, 41 | syl5eq 2668 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
43 | 42 | ad3antrrr 766 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → 0 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
44 | 39, 43 | eqtr4d 2659 |
. . . . . . . 8
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ) |
45 | 44 | ex 450 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
46 | 45 | imim2d 57 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
47 | 46 | ralimdva 2962 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
48 | 47 | reximdv 3016 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
49 | 26, 48 | mpd 15 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
50 | | decpmatmulsumfsupp.m |
. . . . . . . . . . . 12
⊢ · =
(.r‘𝐴) |
51 | 50 | oveqi 6663 |
. . . . . . . . . . 11
⊢ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))) |
52 | 51 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))) |
53 | 52 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) |
54 | 53 | oveq2d 6666 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
55 | | simpllr 799 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
56 | | simplr 792 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
57 | | simpr 477 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
58 | 14, 15, 20, 40 | decpmatmul 20577 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
59 | 55, 56, 57, 58 | syl3anc 1326 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
60 | 15, 20 | decpmatval 20570 |
. . . . . . . . 9
⊢ (((𝑥(.r‘𝐶)𝑦) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
61 | 23, 60 | sylan 488 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
62 | 54, 59, 61 | 3eqtr2d 2662 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
63 | 62 | eqeq1d 2624 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ↔ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 )) |
64 | 63 | imbi2d 330 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ (𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
65 | 64 | ralbidva 2985 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
66 | 65 | rexbidv 3052 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 ) ↔ ∃𝑠 ∈ ℕ0
∀𝑛 ∈
ℕ0 (𝑠 <
𝑛 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = 0 ))) |
67 | 49, 66 | mpbird 247 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑛 − 𝑘))))) = 0 )) |
68 | 4, 5, 11, 67 | mptnn0fsuppd 12798 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ (𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘) · (𝑦 decompPMat (𝑙 − 𝑘)))))) finSupp 0 ) |