| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6203 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (0g‘𝑄) ∈ V) |
| 2 | | ovexd 6680 |
. 2
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑙 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋)) ∈ V) |
| 3 | | oveq2 6658 |
. . . . 5
⊢ (𝑙 = 𝑛 → (0...𝑙) = (0...𝑛)) |
| 4 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑙 = 𝑛 → (𝑙 − 𝑘) = (𝑛 − 𝑘)) |
| 5 | 4 | oveq2d 6666 |
. . . . . 6
⊢ (𝑙 = 𝑛 → (𝑦 decompPMat (𝑙 − 𝑘)) = (𝑦 decompPMat (𝑛 − 𝑘))) |
| 6 | 5 | oveq2d 6666 |
. . . . 5
⊢ (𝑙 = 𝑛 → ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))) = ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))) |
| 7 | 3, 6 | mpteq12dv 4733 |
. . . 4
⊢ (𝑙 = 𝑛 → (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘)))) = (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) |
| 8 | 7 | oveq2d 6666 |
. . 3
⊢ (𝑙 = 𝑛 → (𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
| 9 | | oveq1 6657 |
. . 3
⊢ (𝑙 = 𝑛 → (𝑙 ↑ 𝑋) = (𝑛 ↑ 𝑋)) |
| 10 | 8, 9 | oveq12d 6668 |
. 2
⊢ (𝑙 = 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋)) = ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋))) |
| 11 | | simpll 790 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ Fin) |
| 12 | | simplr 792 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑅 ∈ Ring) |
| 13 | | pm2mpfo.p |
. . . . . . . . . 10
⊢ 𝑃 = (Poly1‘𝑅) |
| 14 | | pm2mpfo.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 15 | 13, 14 | pmatring 20498 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring) |
| 16 | 15 | anim1i 592 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 17 | | 3anass 1042 |
. . . . . . . 8
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ↔ (𝐶 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵))) |
| 18 | 16, 17 | sylibr 224 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 19 | | pm2mpfo.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐶) |
| 20 | | eqid 2622 |
. . . . . . . 8
⊢
(.r‘𝐶) = (.r‘𝐶) |
| 21 | 19, 20 | ringcl 18561 |
. . . . . . 7
⊢ ((𝐶 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
| 22 | 18, 21 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) |
| 23 | | eqid 2622 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 24 | 13, 14, 19, 23 | pmatcoe1fsupp 20506 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑥(.r‘𝐶)𝑦) ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
| 25 | 11, 12, 22, 24 | syl3anc 1326 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
| 26 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = 𝑖 → (𝑎(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) |
| 27 | 26 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = 𝑖 → (coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))) |
| 28 | 27 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = 𝑖 → ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛)) |
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = 𝑖 → (((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅))) |
| 30 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 = 𝑗 → (𝑖(𝑥(.r‘𝐶)𝑦)𝑏) = (𝑖(𝑥(.r‘𝐶)𝑦)𝑗)) |
| 31 | 30 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑏 = 𝑗 → (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏)) = (coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))) |
| 32 | 31 | fveq1d 6193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 = 𝑗 → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) |
| 33 | 32 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏 = 𝑗 → (((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) ↔ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
| 34 | 29, 33 | rspc2va 3323 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
| 35 | 34 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑎 ∈
𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
| 36 | 35 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅))) |
| 37 | 36 | 3impib 1262 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛) = (0g‘𝑅)) |
| 38 | 37 | mpt2eq3dva 6719 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 39 | | pm2mpfo.a |
. . . . . . . . . . . . . 14
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 40 | 39, 23 | mat0op 20225 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 41 | 40 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (0g‘𝐴) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 42 | 39 | matring 20249 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 43 | | pm2mpfo.q |
. . . . . . . . . . . . . . . 16
⊢ 𝑄 = (Poly1‘𝐴) |
| 44 | 43 | ply1sca 19623 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Ring → 𝐴 = (Scalar‘𝑄)) |
| 45 | 42, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 = (Scalar‘𝑄)) |
| 46 | 45 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → 𝐴 = (Scalar‘𝑄)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (0g‘𝐴) =
(0g‘(Scalar‘𝑄))) |
| 48 | 38, 41, 47 | 3eqtr2d 2662 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) = (0g‘(Scalar‘𝑄))) |
| 49 | 48 | oveq1d 6665 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) =
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋))) |
| 50 | 43 | ply1lmod 19622 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ Ring → 𝑄 ∈ LMod) |
| 51 | 42, 50 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑄 ∈ LMod) |
| 52 | 51 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝑄 ∈ LMod) |
| 53 | 52 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑄 ∈ LMod) |
| 54 | 42 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐴 ∈ Ring) |
| 55 | | pm2mpfo.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = (var1‘𝐴) |
| 56 | | eqid 2622 |
. . . . . . . . . . . . . 14
⊢
(mulGrp‘𝑄) =
(mulGrp‘𝑄) |
| 57 | | pm2mpfo.e |
. . . . . . . . . . . . . 14
⊢ ↑ =
(.g‘(mulGrp‘𝑄)) |
| 58 | | pm2mpfo.l |
. . . . . . . . . . . . . 14
⊢ 𝐿 = (Base‘𝑄) |
| 59 | 43, 55, 56, 57, 58 | ply1moncl 19641 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Ring ∧ 𝑛 ∈ ℕ0)
→ (𝑛 ↑ 𝑋) ∈ 𝐿) |
| 60 | 54, 59 | sylan 488 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑛 ↑ 𝑋) ∈ 𝐿) |
| 61 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Scalar‘𝑄) =
(Scalar‘𝑄) |
| 62 | | pm2mpfo.m |
. . . . . . . . . . . . 13
⊢ ∗ = (
·𝑠 ‘𝑄) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(0g‘(Scalar‘𝑄)) =
(0g‘(Scalar‘𝑄)) |
| 64 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑄) = (0g‘𝑄) |
| 65 | 58, 61, 62, 63, 64 | lmod0vs 18896 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈ LMod ∧ (𝑛 ↑ 𝑋) ∈ 𝐿) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
| 66 | 53, 60, 65 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
| 67 | 66 | adantr 481 |
. . . . . . . . . 10
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) →
((0g‘(Scalar‘𝑄)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
| 68 | 49, 67 | eqtrd 2656 |
. . . . . . . . 9
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring) ∧
(𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) ∧
∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) |
| 69 | 68 | ex 450 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) →
(∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 70 | 69 | imim2d 57 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 71 | 70 | ralimdva 2962 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 72 | 71 | reximdv 3016 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 ((coe1‘(𝑎(𝑥(.r‘𝐶)𝑦)𝑏))‘𝑛) = (0g‘𝑅)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 73 | 25, 72 | mpd 15 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 74 | 14, 19 | decpmatval 20570 |
. . . . . . . . . 10
⊢ (((𝑥(.r‘𝐶)𝑦) ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
| 75 | 22, 74 | sylan 488 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛))) |
| 76 | 75 | oveq1d 6665 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋))) |
| 77 | 76 | eqeq1d 2624 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄) ↔ ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 78 | 77 | imbi2d 330 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 79 | 78 | ralbidva 2985 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 80 | 79 | rexbidv 3052 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ ((coe1‘(𝑖(𝑥(.r‘𝐶)𝑦)𝑗))‘𝑛)) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 81 | 73, 80 | mpbird 247 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 82 | | simpllr 799 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 83 | | simplr 792 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) |
| 84 | | simpr 477 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 85 | 13, 14, 19, 39 | decpmatmul 20577 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
| 86 | 82, 83, 84, 85 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) = (𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘)))))) |
| 87 | 86 | eqcomd 2628 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) = ((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛)) |
| 88 | 87 | oveq1d 6665 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋))) |
| 89 | 88 | eqeq1d 2624 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → (((𝐴 Σg
(𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄) ↔ (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 90 | 89 | imbi2d 330 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) ∧ 𝑛 ∈ ℕ0) → ((𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 91 | 90 | ralbidva 2985 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∀𝑛 ∈ ℕ0 (𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 92 | 91 | rexbidv 3052 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)) ↔ ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → (((𝑥(.r‘𝐶)𝑦) decompPMat 𝑛) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄)))) |
| 93 | 81, 92 | mpbird 247 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ∃𝑠 ∈ ℕ0 ∀𝑛 ∈ ℕ0
(𝑠 < 𝑛 → ((𝐴 Σg (𝑘 ∈ (0...𝑛) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑛 − 𝑘))))) ∗ (𝑛 ↑ 𝑋)) = (0g‘𝑄))) |
| 94 | 1, 2, 10, 93 | mptnn0fsuppd 12798 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑙 ∈ ℕ0 ↦ ((𝐴 Σg
(𝑘 ∈ (0...𝑙) ↦ ((𝑥 decompPMat 𝑘)(.r‘𝐴)(𝑦 decompPMat (𝑙 − 𝑘))))) ∗ (𝑙 ↑ 𝑋))) finSupp (0g‘𝑄)) |