![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salexct2 | Structured version Visualization version GIF version |
Description: An example of a subset that does not belong to a non trivial sigma-algebra, see salexct 40552. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salexct2.1 | ⊢ 𝐴 = (0[,]2) |
salexct2.2 | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salexct2.3 | ⊢ 𝐵 = (0[,]1) |
Ref | Expression |
---|---|
salexct2 | ⊢ ¬ 𝐵 ∈ 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0xr 10086 | . . . . . . . 8 ⊢ 0 ∈ ℝ* | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 ∈ ℝ*) |
3 | 1re 10039 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
4 | 3 | rexri 10097 | . . . . . . . 8 ⊢ 1 ∈ ℝ* |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 1 ∈ ℝ*) |
6 | 0lt1 10550 | . . . . . . . 8 ⊢ 0 < 1 | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (⊤ → 0 < 1) |
8 | salexct2.3 | . . . . . . 7 ⊢ 𝐵 = (0[,]1) | |
9 | 2, 5, 7, 8 | iccnct 39768 | . . . . . 6 ⊢ (⊤ → ¬ 𝐵 ≼ ω) |
10 | 9 | trud 1493 | . . . . 5 ⊢ ¬ 𝐵 ≼ ω |
11 | 2re 11090 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
12 | 11 | rexri 10097 | . . . . . . . . 9 ⊢ 2 ∈ ℝ* |
13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 2 ∈ ℝ*) |
14 | 1lt2 11194 | . . . . . . . . 9 ⊢ 1 < 2 | |
15 | 14 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → 1 < 2) |
16 | eqid 2622 | . . . . . . . 8 ⊢ (1(,]2) = (1(,]2) | |
17 | 5, 13, 15, 16 | iocnct 39767 | . . . . . . 7 ⊢ (⊤ → ¬ (1(,]2) ≼ ω) |
18 | 17 | trud 1493 | . . . . . 6 ⊢ ¬ (1(,]2) ≼ ω |
19 | salexct2.1 | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
20 | 19, 8 | difeq12i 3726 | . . . . . . . 8 ⊢ (𝐴 ∖ 𝐵) = ((0[,]2) ∖ (0[,]1)) |
21 | 2, 5, 7 | xrltled 39486 | . . . . . . . . . 10 ⊢ (⊤ → 0 ≤ 1) |
22 | 2, 5, 13, 21 | iccdificc 39766 | . . . . . . . . 9 ⊢ (⊤ → ((0[,]2) ∖ (0[,]1)) = (1(,]2)) |
23 | 22 | trud 1493 | . . . . . . . 8 ⊢ ((0[,]2) ∖ (0[,]1)) = (1(,]2) |
24 | 20, 23 | eqtri 2644 | . . . . . . 7 ⊢ (𝐴 ∖ 𝐵) = (1(,]2) |
25 | 24 | breq1i 4660 | . . . . . 6 ⊢ ((𝐴 ∖ 𝐵) ≼ ω ↔ (1(,]2) ≼ ω) |
26 | 18, 25 | mtbir 313 | . . . . 5 ⊢ ¬ (𝐴 ∖ 𝐵) ≼ ω |
27 | 10, 26 | pm3.2i 471 | . . . 4 ⊢ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω) |
28 | ioran 511 | . . . 4 ⊢ (¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) ↔ (¬ 𝐵 ≼ ω ∧ ¬ (𝐴 ∖ 𝐵) ≼ ω)) | |
29 | 27, 28 | mpbir 221 | . . 3 ⊢ ¬ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω) |
30 | 29 | intnan 960 | . 2 ⊢ ¬ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω)) |
31 | breq1 4656 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ≼ ω ↔ 𝐵 ≼ ω)) | |
32 | difeq2 3722 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝐵)) | |
33 | 32 | breq1d 4663 | . . . 4 ⊢ (𝑥 = 𝐵 → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ 𝐵) ≼ ω)) |
34 | 31, 33 | orbi12d 746 | . . 3 ⊢ (𝑥 = 𝐵 → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
35 | salexct2.2 | . . 3 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
36 | 34, 35 | elrab2 3366 | . 2 ⊢ (𝐵 ∈ 𝑆 ↔ (𝐵 ∈ 𝒫 𝐴 ∧ (𝐵 ≼ ω ∨ (𝐴 ∖ 𝐵) ≼ ω))) |
37 | 30, 36 | mtbir 313 | 1 ⊢ ¬ 𝐵 ∈ 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 383 ∧ wa 384 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 {crab 2916 ∖ cdif 3571 𝒫 cpw 4158 class class class wbr 4653 (class class class)co 6650 ωcom 7065 ≼ cdom 7953 0cc0 9936 1c1 9937 ℝ*cxr 10073 < clt 10074 2c2 11070 (,]cioc 12176 [,]cicc 12178 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-omul 7565 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-acn 8768 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-fl 12593 df-seq 12802 df-exp 12861 df-hash 13118 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-limsup 14202 df-clim 14219 df-rlim 14220 df-sum 14417 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-ntr 20824 |
This theorem is referenced by: salexct3 40560 salgencntex 40561 salgensscntex 40562 |
Copyright terms: Public domain | W3C validator |