Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   Unicode version

Theorem smfpimgtxr 40988
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimgtxr.x  |-  F/_ x F
smfpimgtxr.s  |-  ( ph  ->  S  e. SAlg )
smfpimgtxr.f  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
smfpimgtxr.d  |-  D  =  dom  F
smfpimgtxr.a  |-  ( ph  ->  A  e.  RR* )
Assertion
Ref Expression
smfpimgtxr  |-  ( ph  ->  { x  e.  D  |  A  <  ( F `
 x ) }  e.  ( St  D ) )
Distinct variable groups:    x, A    x, D
Allowed substitution hints:    ph( x)    S( x)    F( x)

Proof of Theorem smfpimgtxr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq1 4656 . . . . . 6  |-  ( A  = -oo  ->  ( A  <  ( F `  x )  <-> -oo  <  ( F `  x )
) )
21rabbidv 3189 . . . . 5  |-  ( A  = -oo  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  {
x  e.  D  | -oo  <  ( F `  x ) } )
32adantl 482 . . . 4  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  {
x  e.  D  | -oo  <  ( F `  x ) } )
4 smfpimgtxr.d . . . . . . . . 9  |-  D  =  dom  F
5 smfpimgtxr.x . . . . . . . . . 10  |-  F/_ x F
65nfdm 5367 . . . . . . . . 9  |-  F/_ x dom  F
74, 6nfcxfr 2762 . . . . . . . 8  |-  F/_ x D
8 nfcv 2764 . . . . . . . 8  |-  F/_ y D
9 nfv 1843 . . . . . . . 8  |-  F/ y -oo  <  ( F `  x )
10 nfcv 2764 . . . . . . . . 9  |-  F/_ x -oo
11 nfcv 2764 . . . . . . . . 9  |-  F/_ x  <
12 nfcv 2764 . . . . . . . . . 10  |-  F/_ x
y
135, 12nffv 6198 . . . . . . . . 9  |-  F/_ x
( F `  y
)
1410, 11, 13nfbr 4699 . . . . . . . 8  |-  F/ x -oo  <  ( F `  y )
15 fveq2 6191 . . . . . . . . 9  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
1615breq2d 4665 . . . . . . . 8  |-  ( x  =  y  ->  ( -oo  <  ( F `  x )  <-> -oo  <  ( F `  y )
) )
177, 8, 9, 14, 16cbvrab 3198 . . . . . . 7  |-  { x  e.  D  | -oo  <  ( F `  x
) }  =  {
y  e.  D  | -oo  <  ( F `  y ) }
1817a1i 11 . . . . . 6  |-  ( ph  ->  { x  e.  D  | -oo  <  ( F `  x ) }  =  { y  e.  D  | -oo  <  ( F `  y ) } )
19 nfv 1843 . . . . . . 7  |-  F/ y
ph
20 smfpimgtxr.s . . . . . . . . . 10  |-  ( ph  ->  S  e. SAlg )
21 smfpimgtxr.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  (SMblFn `  S ) )
2220, 21, 4smff 40941 . . . . . . . . 9  |-  ( ph  ->  F : D --> RR )
2322adantr 481 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  F : D --> RR )
24 simpr 477 . . . . . . . 8  |-  ( (
ph  /\  y  e.  D )  ->  y  e.  D )
2523, 24ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  y  e.  D )  ->  ( F `  y )  e.  RR )
2619, 25pimgtmnf 40932 . . . . . 6  |-  ( ph  ->  { y  e.  D  | -oo  <  ( F `  y ) }  =  D )
27 eqidd 2623 . . . . . 6  |-  ( ph  ->  D  =  D )
2818, 26, 273eqtrd 2660 . . . . 5  |-  ( ph  ->  { x  e.  D  | -oo  <  ( F `  x ) }  =  D )
2928adantr 481 . . . 4  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  | -oo  <  ( F `  x
) }  =  D )
303, 29eqtrd 2656 . . 3  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  D )
3120, 21, 4smfdmss 40942 . . . . . . 7  |-  ( ph  ->  D  C_  U. S )
3220, 31restuni4 39304 . . . . . 6  |-  ( ph  ->  U. ( St  D )  =  D )
3332eqcomd 2628 . . . . 5  |-  ( ph  ->  D  =  U. ( St  D ) )
3421dmexd 39422 . . . . . . . 8  |-  ( ph  ->  dom  F  e.  _V )
354, 34syl5eqel 2705 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
36 eqid 2622 . . . . . . 7  |-  ( St  D )  =  ( St  D )
3720, 35, 36subsalsal 40577 . . . . . 6  |-  ( ph  ->  ( St  D )  e. SAlg )
3837salunid 40571 . . . . 5  |-  ( ph  ->  U. ( St  D )  e.  ( St  D ) )
3933, 38eqeltrd 2701 . . . 4  |-  ( ph  ->  D  e.  ( St  D ) )
4039adantr 481 . . 3  |-  ( (
ph  /\  A  = -oo )  ->  D  e.  ( St  D ) )
4130, 40eqeltrd 2701 . 2  |-  ( (
ph  /\  A  = -oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
42 neqne 2802 . . . 4  |-  ( -.  A  = -oo  ->  A  =/= -oo )
4342adantl 482 . . 3  |-  ( (
ph  /\  -.  A  = -oo )  ->  A  =/= -oo )
44 breq1 4656 . . . . . . . . 9  |-  ( A  = +oo  ->  ( A  <  ( F `  x )  <-> +oo  <  ( F `  x )
) )
4544rabbidv 3189 . . . . . . . 8  |-  ( A  = +oo  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  {
x  e.  D  | +oo  <  ( F `  x ) } )
4645adantl 482 . . . . . . 7  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  {
x  e.  D  | +oo  <  ( F `  x ) } )
475, 22pimgtpnf2 40917 . . . . . . . 8  |-  ( ph  ->  { x  e.  D  | +oo  <  ( F `  x ) }  =  (/) )
4847adantr 481 . . . . . . 7  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  | +oo  <  ( F `  x
) }  =  (/) )
4946, 48eqtrd 2656 . . . . . 6  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  =  (/) )
50370sald 40568 . . . . . . 7  |-  ( ph  -> 
(/)  e.  ( St  D
) )
5150adantr 481 . . . . . 6  |-  ( (
ph  /\  A  = +oo )  ->  (/)  e.  ( St  D ) )
5249, 51eqeltrd 2701 . . . . 5  |-  ( (
ph  /\  A  = +oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
5352adantlr 751 . . . 4  |-  ( ( ( ph  /\  A  =/= -oo )  /\  A  = +oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
54 simpll 790 . . . . 5  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  ph )
55 smfpimgtxr.a . . . . . . 7  |-  ( ph  ->  A  e.  RR* )
5654, 55syl 17 . . . . . 6  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  A  e.  RR* )
57 simplr 792 . . . . . 6  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  A  =/= -oo )
58 neqne 2802 . . . . . . 7  |-  ( -.  A  = +oo  ->  A  =/= +oo )
5958adantl 482 . . . . . 6  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  A  =/= +oo )
6056, 57, 59xrred 39581 . . . . 5  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  A  e.  RR )
6120adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  S  e. SAlg
)
6221adantr 481 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  F  e.  (SMblFn `  S )
)
63 simpr 477 . . . . . 6  |-  ( (
ph  /\  A  e.  RR )  ->  A  e.  RR )
645, 61, 62, 4, 63smfpreimagtf 40976 . . . . 5  |-  ( (
ph  /\  A  e.  RR )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
6554, 60, 64syl2anc 693 . . . 4  |-  ( ( ( ph  /\  A  =/= -oo )  /\  -.  A  = +oo )  ->  { x  e.  D  |  A  <  ( F `
 x ) }  e.  ( St  D ) )
6653, 65pm2.61dan 832 . . 3  |-  ( (
ph  /\  A  =/= -oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
6743, 66syldan 487 . 2  |-  ( (
ph  /\  -.  A  = -oo )  ->  { x  e.  D  |  A  <  ( F `  x
) }  e.  ( St  D ) )
6841, 67pm2.61dan 832 1  |-  ( ph  ->  { x  e.  D  |  A  <  ( F `
 x ) }  e.  ( St  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   {crab 2916   _Vcvv 3200   (/)c0 3915   U.cuni 4436   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cc 9257  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-acn 8768  df-ac 8939  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ioo 12179  df-ico 12181  df-fl 12593  df-rest 16083  df-salg 40529  df-smblfn 40910
This theorem is referenced by:  smfpimgtxrmpt  40992
  Copyright terms: Public domain W3C validator