Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   GIF version

Theorem stirlinglem2 40292
Description: 𝐴 maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
Assertion
Ref Expression
stirlinglem2 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)

Proof of Theorem stirlinglem2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 faccl 13070 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
3 nnrp 11842 . . . . 5 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
41, 2, 33syl 18 . . . 4 (𝑁 ∈ ℕ → (!‘𝑁) ∈ ℝ+)
5 2rp 11837 . . . . . . . 8 2 ∈ ℝ+
65a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
7 nnrp 11842 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
86, 7rpmulcld 11888 . . . . . 6 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
98rpsqrtcld 14150 . . . . 5 (𝑁 ∈ ℕ → (√‘(2 · 𝑁)) ∈ ℝ+)
10 epr 14936 . . . . . . . 8 e ∈ ℝ+
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → e ∈ ℝ+)
127, 11rpdivcld 11889 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 / e) ∈ ℝ+)
13 nnz 11399 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
1412, 13rpexpcld 13032 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 / e)↑𝑁) ∈ ℝ+)
159, 14rpmulcld 11888 . . . 4 (𝑁 ∈ ℕ → ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)) ∈ ℝ+)
164, 15rpdivcld 11889 . . 3 (𝑁 ∈ ℕ → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
17 stirlinglem2.1 . . . . . 6 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
18 fveq2 6191 . . . . . . . 8 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
19 oveq2 6658 . . . . . . . . . 10 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
2019fveq2d 6195 . . . . . . . . 9 (𝑛 = 𝑘 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
21 oveq1 6657 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝑛 / e) = (𝑘 / e))
22 id 22 . . . . . . . . . 10 (𝑛 = 𝑘𝑛 = 𝑘)
2321, 22oveq12d 6668 . . . . . . . . 9 (𝑛 = 𝑘 → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
2420, 23oveq12d 6668 . . . . . . . 8 (𝑛 = 𝑘 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
2518, 24oveq12d 6668 . . . . . . 7 (𝑛 = 𝑘 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2625cbvmptv 4750 . . . . . 6 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2717, 26eqtri 2644 . . . . 5 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
2827a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝐴 = (𝑘 ∈ ℕ ↦ ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))))
29 simpr 477 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → 𝑘 = 𝑁)
3029fveq2d 6195 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (!‘𝑘) = (!‘𝑁))
3129oveq2d 6666 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (2 · 𝑘) = (2 · 𝑁))
3231fveq2d 6195 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (√‘(2 · 𝑘)) = (√‘(2 · 𝑁)))
3329oveq1d 6665 . . . . . . 7 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → (𝑘 / e) = (𝑁 / e))
3433, 29oveq12d 6668 . . . . . 6 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((𝑘 / e)↑𝑘) = ((𝑁 / e)↑𝑁))
3532, 34oveq12d 6668 . . . . 5 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) = ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁)))
3630, 35oveq12d 6668 . . . 4 (((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) ∧ 𝑘 = 𝑁) → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
37 simpl 473 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → 𝑁 ∈ ℕ)
38 simpr 477 . . . 4 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+)
3928, 36, 37, 38fvmptd 6288 . . 3 ((𝑁 ∈ ℕ ∧ ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))) ∈ ℝ+) → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4016, 39mpdan 702 . 2 (𝑁 ∈ ℕ → (𝐴𝑁) = ((!‘𝑁) / ((√‘(2 · 𝑁)) · ((𝑁 / e)↑𝑁))))
4140, 16eqeltrd 2701 1 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729  cfv 5888  (class class class)co 6650   · cmul 9941   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  +crp 11832  cexp 12860  !cfa 13060  csqrt 13973  eceu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799
This theorem is referenced by:  stirlinglem4  40294  stirlinglem11  40301  stirlinglem12  40302  stirlinglem13  40303  stirlinglem14  40304
  Copyright terms: Public domain W3C validator