| Step | Hyp | Ref
| Expression |
| 1 | | 1nn 11031 |
. . . . 5
⊢ 1 ∈
ℕ |
| 2 | | stirlinglem12.1 |
. . . . . . 7
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 3 | 2 | stirlinglem2 40292 |
. . . . . 6
⊢ (1 ∈
ℕ → (𝐴‘1)
∈ ℝ+) |
| 4 | | relogcl 24322 |
. . . . . 6
⊢ ((𝐴‘1) ∈
ℝ+ → (log‘(𝐴‘1)) ∈ ℝ) |
| 5 | 1, 3, 4 | mp2b 10 |
. . . . 5
⊢
(log‘(𝐴‘1)) ∈ ℝ |
| 6 | | nfcv 2764 |
. . . . . 6
⊢
Ⅎ𝑛1 |
| 7 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑛log |
| 8 | | nfmpt1 4747 |
. . . . . . . . 9
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 9 | 2, 8 | nfcxfr 2762 |
. . . . . . . 8
⊢
Ⅎ𝑛𝐴 |
| 10 | 9, 6 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑛(𝐴‘1) |
| 11 | 7, 10 | nffv 6198 |
. . . . . 6
⊢
Ⅎ𝑛(log‘(𝐴‘1)) |
| 12 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑛 = 1 → (𝐴‘𝑛) = (𝐴‘1)) |
| 13 | 12 | fveq2d 6195 |
. . . . . 6
⊢ (𝑛 = 1 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘1))) |
| 14 | | stirlinglem12.2 |
. . . . . 6
⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) |
| 15 | 6, 11, 13, 14 | fvmptf 6301 |
. . . . 5
⊢ ((1
∈ ℕ ∧ (log‘(𝐴‘1)) ∈ ℝ) → (𝐵‘1) = (log‘(𝐴‘1))) |
| 16 | 1, 5, 15 | mp2an 708 |
. . . 4
⊢ (𝐵‘1) = (log‘(𝐴‘1)) |
| 17 | 16, 5 | eqeltri 2697 |
. . 3
⊢ (𝐵‘1) ∈
ℝ |
| 18 | 17 | a1i 11 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐵‘1) ∈
ℝ) |
| 19 | 2 | stirlinglem2 40292 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐴‘𝑁) ∈
ℝ+) |
| 20 | 19 | relogcld 24369 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(log‘(𝐴‘𝑁)) ∈
ℝ) |
| 21 | | nfcv 2764 |
. . . . 5
⊢
Ⅎ𝑛𝑁 |
| 22 | 9, 21 | nffv 6198 |
. . . . . 6
⊢
Ⅎ𝑛(𝐴‘𝑁) |
| 23 | 7, 22 | nffv 6198 |
. . . . 5
⊢
Ⅎ𝑛(log‘(𝐴‘𝑁)) |
| 24 | | fveq2 6191 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) |
| 25 | 24 | fveq2d 6195 |
. . . . 5
⊢ (𝑛 = 𝑁 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑁))) |
| 26 | 21, 23, 25, 14 | fvmptf 6301 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧
(log‘(𝐴‘𝑁)) ∈ ℝ) → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 27 | 20, 26 | mpdan 702 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 28 | 27, 20 | eqeltrd 2701 |
. 2
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) ∈ ℝ) |
| 29 | | 4re 11097 |
. . . 4
⊢ 4 ∈
ℝ |
| 30 | | 4ne0 11117 |
. . . 4
⊢ 4 ≠
0 |
| 31 | 29, 30 | rereccli 10790 |
. . 3
⊢ (1 / 4)
∈ ℝ |
| 32 | 31 | a1i 11 |
. 2
⊢ (𝑁 ∈ ℕ → (1 / 4)
∈ ℝ) |
| 33 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
| 34 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = (𝑗 + 1) → (𝐵‘𝑘) = (𝐵‘(𝑗 + 1))) |
| 35 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 1 → (𝐵‘𝑘) = (𝐵‘1)) |
| 36 | | fveq2 6191 |
. . . . 5
⊢ (𝑘 = 𝑁 → (𝐵‘𝑘) = (𝐵‘𝑁)) |
| 37 | | elnnuz 11724 |
. . . . . 6
⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈
(ℤ≥‘1)) |
| 38 | 37 | biimpi 206 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
(ℤ≥‘1)) |
| 39 | | elfznn 12370 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) |
| 40 | 2 | stirlinglem2 40292 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) ∈
ℝ+) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ∈
ℝ+) |
| 42 | 41 | relogcld 24369 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (log‘(𝐴‘𝑘)) ∈ ℝ) |
| 43 | | nfcv 2764 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑘 |
| 44 | 9, 43 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝐴‘𝑘) |
| 45 | 7, 44 | nffv 6198 |
. . . . . . . . 9
⊢
Ⅎ𝑛(log‘(𝐴‘𝑘)) |
| 46 | | fveq2 6191 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (𝐴‘𝑛) = (𝐴‘𝑘)) |
| 47 | 46 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑛 = 𝑘 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑘))) |
| 48 | 43, 45, 47, 14 | fvmptf 6301 |
. . . . . . . 8
⊢ ((𝑘 ∈ ℕ ∧
(log‘(𝐴‘𝑘)) ∈ ℝ) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 49 | 39, 42, 48 | syl2anc 693 |
. . . . . . 7
⊢ (𝑘 ∈ (1...𝑁) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 50 | 49 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) = (log‘(𝐴‘𝑘))) |
| 51 | 41 | rpcnd 11874 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ∈ ℂ) |
| 52 | 51 | adantl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ∈ ℂ) |
| 53 | 40 | rpne0d 11877 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐴‘𝑘) ≠ 0) |
| 54 | 39, 53 | syl 17 |
. . . . . . . 8
⊢ (𝑘 ∈ (1...𝑁) → (𝐴‘𝑘) ≠ 0) |
| 55 | 54 | adantl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐴‘𝑘) ≠ 0) |
| 56 | 52, 55 | logcld 24317 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (log‘(𝐴‘𝑘)) ∈ ℂ) |
| 57 | 50, 56 | eqeltrd 2701 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → (𝐵‘𝑘) ∈ ℂ) |
| 58 | 33, 34, 35, 36, 38, 57 | telfsumo 14534 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1..^𝑁)((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) = ((𝐵‘1) − (𝐵‘𝑁))) |
| 59 | | nnz 11399 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 60 | | fzoval 12471 |
. . . . . 6
⊢ (𝑁 ∈ ℤ →
(1..^𝑁) = (1...(𝑁 − 1))) |
| 61 | 59, 60 | syl 17 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(1..^𝑁) = (1...(𝑁 − 1))) |
| 62 | 61 | sumeq1d 14431 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1..^𝑁)((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1)))) |
| 63 | 58, 62 | eqtr3d 2658 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵‘𝑁)) = Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1)))) |
| 64 | | fzfid 12772 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 − 1)) ∈
Fin) |
| 65 | | elfznn 12370 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℕ) |
| 66 | 65 | adantl 482 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → 𝑗 ∈ ℕ) |
| 67 | 2 | stirlinglem2 40292 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝐴‘𝑗) ∈
ℝ+) |
| 68 | 67 | relogcld 24369 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ →
(log‘(𝐴‘𝑗)) ∈
ℝ) |
| 69 | | nfcv 2764 |
. . . . . . . . . 10
⊢
Ⅎ𝑛𝑗 |
| 70 | 9, 69 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝐴‘𝑗) |
| 71 | 7, 70 | nffv 6198 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(log‘(𝐴‘𝑗)) |
| 72 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑗 → (𝐴‘𝑛) = (𝐴‘𝑗)) |
| 73 | 72 | fveq2d 6195 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑗 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑗))) |
| 74 | 69, 71, 73, 14 | fvmptf 6301 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℕ ∧
(log‘(𝐴‘𝑗)) ∈ ℝ) → (𝐵‘𝑗) = (log‘(𝐴‘𝑗))) |
| 75 | 68, 74 | mpdan 702 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝐵‘𝑗) = (log‘(𝐴‘𝑗))) |
| 76 | 75, 68 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝑗 ∈ ℕ → (𝐵‘𝑗) ∈ ℝ) |
| 77 | 66, 76 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘𝑗) ∈ ℝ) |
| 78 | | peano2nn 11032 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℕ) |
| 79 | 2 | stirlinglem2 40292 |
. . . . . . . . . . . 12
⊢ ((𝑗 + 1) ∈ ℕ →
(𝐴‘(𝑗 + 1)) ∈
ℝ+) |
| 80 | 78, 79 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → (𝐴‘(𝑗 + 1)) ∈
ℝ+) |
| 81 | 80 | relogcld 24369 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ →
(log‘(𝐴‘(𝑗 + 1))) ∈
ℝ) |
| 82 | | nfcv 2764 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(𝑗 + 1) |
| 83 | 9, 82 | nffv 6198 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑛(𝐴‘(𝑗 + 1)) |
| 84 | 7, 83 | nffv 6198 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛(log‘(𝐴‘(𝑗 + 1))) |
| 85 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑛 = (𝑗 + 1) → (𝐴‘𝑛) = (𝐴‘(𝑗 + 1))) |
| 86 | 85 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑗 + 1) → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 87 | 82, 84, 86, 14 | fvmptf 6301 |
. . . . . . . . . 10
⊢ (((𝑗 + 1) ∈ ℕ ∧
(log‘(𝐴‘(𝑗 + 1))) ∈ ℝ) →
(𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 88 | 78, 81, 87 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) = (log‘(𝐴‘(𝑗 + 1)))) |
| 89 | 88, 81 | eqeltrd 2701 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 90 | 65, 89 | syl 17 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 91 | 90 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (𝐵‘(𝑗 + 1)) ∈ ℝ) |
| 92 | 77, 91 | resubcld 10458 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ) |
| 93 | 64, 92 | fsumrecl 14465 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ∈ ℝ) |
| 94 | 31 | a1i 11 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / 4) ∈
ℝ) |
| 95 | 65 | nnred 11035 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℝ) |
| 96 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈
ℝ) |
| 97 | 95, 96 | readdcld 10069 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℝ) |
| 98 | 95, 97 | remulcld 10070 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 99 | 95 | recnd 10068 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ∈ ℂ) |
| 100 | | 1cnd 10056 |
. . . . . . . . . 10
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 1 ∈
ℂ) |
| 101 | 99, 100 | addcld 10059 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ∈ ℂ) |
| 102 | 65 | nnne0d 11065 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → 𝑗 ≠ 0) |
| 103 | 78 | nnne0d 11065 |
. . . . . . . . . 10
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ≠ 0) |
| 104 | 65, 103 | syl 17 |
. . . . . . . . 9
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 + 1) ≠ 0) |
| 105 | 99, 101, 102, 104 | mulne0d 10679 |
. . . . . . . 8
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 106 | 98, 105 | rereccld 10852 |
. . . . . . 7
⊢ (𝑗 ∈ (1...(𝑁 − 1)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 107 | 106 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 108 | 94, 107 | remulcld 10070 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((1 / 4) · (1 /
(𝑗 · (𝑗 + 1)))) ∈
ℝ) |
| 109 | 64, 108 | fsumrecl 14465 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1
/ (𝑗 · (𝑗 + 1)))) ∈
ℝ) |
| 110 | | eqid 2622 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ ((1 /
((2 · 𝑖) + 1))
· ((1 / ((2 · 𝑗) + 1))↑(2 · 𝑖)))) = (𝑖 ∈ ℕ ↦ ((1 / ((2 ·
𝑖) + 1)) · ((1 / ((2
· 𝑗) + 1))↑(2
· 𝑖)))) |
| 111 | | eqid 2622 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ ((1 /
(((2 · 𝑗) +
1)↑2))↑𝑖)) =
(𝑖 ∈ ℕ ↦
((1 / (((2 · 𝑗) +
1)↑2))↑𝑖)) |
| 112 | 2, 14, 110, 111 | stirlinglem10 40300 |
. . . . . 6
⊢ (𝑗 ∈ ℕ → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 113 | 66, 112 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → ((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ ((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 114 | 64, 92, 108, 113 | fsumle 14531 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 115 | 64, 107 | fsumrecl 14465 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 116 | | 1red 10055 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
| 117 | | 4pos 11116 |
. . . . . . . . 9
⊢ 0 <
4 |
| 118 | 29, 117 | elrpii 11835 |
. . . . . . . 8
⊢ 4 ∈
ℝ+ |
| 119 | 118 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ∈
ℝ+) |
| 120 | | 0red 10041 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 ∈
ℝ) |
| 121 | | 0lt1 10550 |
. . . . . . . . 9
⊢ 0 <
1 |
| 122 | 121 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
1) |
| 123 | 120, 116,
122 | ltled 10185 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 0 ≤
1) |
| 124 | 116, 119,
123 | divge0d 11912 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 0 ≤ (1
/ 4)) |
| 125 | | eqid 2622 |
. . . . . . . . . 10
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
| 126 | | eluznn 11758 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℕ) |
| 127 | | stirlinglem12.3 |
. . . . . . . . . . . . 13
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1)))) |
| 128 | 127 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 / (𝑛 · (𝑛 + 1))))) |
| 129 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → 𝑛 = 𝑗) |
| 130 | 129 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 + 1) = (𝑗 + 1)) |
| 131 | 129, 130 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (𝑛 · (𝑛 + 1)) = (𝑗 · (𝑗 + 1))) |
| 132 | 131 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ ℕ ∧ 𝑛 = 𝑗) → (1 / (𝑛 · (𝑛 + 1))) = (1 / (𝑗 · (𝑗 + 1)))) |
| 133 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ) |
| 134 | | nnre 11027 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
| 135 | | 1red 10055 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ) |
| 136 | 134, 135 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℝ) |
| 137 | 134, 136 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 138 | | nncn 11028 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
| 139 | | 1cnd 10056 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 1 ∈
ℂ) |
| 140 | 138, 139 | addcld 10059 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → (𝑗 + 1) ∈
ℂ) |
| 141 | | nnne0 11053 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ≠ 0) |
| 142 | 138, 140,
141, 103 | mulne0d 10679 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 143 | 137, 142 | rereccld 10852 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℝ) |
| 144 | 128, 132,
133, 143 | fvmptd 6288 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 145 | 126, 144 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 146 | 126 | nnred 11035 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℝ) |
| 147 | | 1red 10055 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 1 ∈ ℝ) |
| 148 | 146, 147 | readdcld 10069 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈ ℝ) |
| 149 | 146, 148 | remulcld 10070 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ∈ ℝ) |
| 150 | 146 | recnd 10068 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℂ) |
| 151 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 1 ∈ ℂ) |
| 152 | 150, 151 | addcld 10059 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈ ℂ) |
| 153 | 126 | nnne0d 11065 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ≠ 0) |
| 154 | 126, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ≠ 0) |
| 155 | 150, 152,
153, 154 | mulne0d 10679 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 156 | 149, 155 | rereccld 10852 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 157 | | seqeq1 12804 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 1 → seq𝑁( + , 𝐹) = seq1( + , 𝐹)) |
| 158 | 127 | trireciplem 14594 |
. . . . . . . . . . . . . 14
⊢ seq1( + ,
𝐹) ⇝
1 |
| 159 | | climrel 14223 |
. . . . . . . . . . . . . . 15
⊢ Rel
⇝ |
| 160 | 159 | releldmi 5362 |
. . . . . . . . . . . . . 14
⊢ (seq1( +
, 𝐹) ⇝ 1 → seq1(
+ , 𝐹) ∈ dom ⇝
) |
| 161 | 158, 160 | mp1i 13 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 1 → seq1( + , 𝐹) ∈ dom ⇝
) |
| 162 | 157, 161 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (𝑁 = 1 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 163 | 162 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 164 | | simpl 473 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → 𝑁 ∈
ℕ) |
| 165 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → ¬ 𝑁 = 1) |
| 166 | | elnn1uz2 11765 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |
| 167 | 164, 166 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (𝑁 = 1 ∨ 𝑁 ∈
(ℤ≥‘2))) |
| 168 | 167 | ord 392 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (¬ 𝑁 = 1 → 𝑁 ∈
(ℤ≥‘2))) |
| 169 | 165, 168 | mpd 15 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → 𝑁 ∈
(ℤ≥‘2)) |
| 170 | | uz2m1nn 11763 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈
(ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) |
| 171 | 169, 170 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → (𝑁 − 1) ∈
ℕ) |
| 172 | | nncn 11028 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 173 | 172 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 𝑁 ∈
ℂ) |
| 174 | | 1cnd 10056 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 1 ∈ ℂ) |
| 175 | 173, 174 | npcand 10396 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ ((𝑁 − 1) + 1)
= 𝑁) |
| 176 | 175 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ 𝑁 = ((𝑁 − 1) +
1)) |
| 177 | 176 | seqeq1d 12807 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) = seq((𝑁 − 1) + 1)( + , 𝐹)) |
| 178 | | nnuz 11723 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
| 179 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈ ℕ
→ (𝑁 − 1) ∈
ℕ) |
| 180 | 143 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℕ → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℂ) |
| 181 | 144, 180 | eqeltrd 2701 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → (𝐹‘𝑗) ∈ ℂ) |
| 182 | 181 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 − 1) ∈ ℕ ∧
𝑗 ∈ ℕ) →
(𝐹‘𝑗) ∈ ℂ) |
| 183 | 158 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 1) ∈ ℕ
→ seq1( + , 𝐹) ⇝
1) |
| 184 | 178, 179,
182, 183 | clim2ser 14385 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 1) ∈ ℕ
→ seq((𝑁 − 1) +
1)( + , 𝐹) ⇝ (1
− (seq1( + , 𝐹)‘(𝑁 − 1)))) |
| 185 | 184 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq((𝑁 − 1) +
1)( + , 𝐹) ⇝ (1
− (seq1( + , 𝐹)‘(𝑁 − 1)))) |
| 186 | 177, 185 | eqbrtrd 4675 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + ,
𝐹)‘(𝑁 − 1)))) |
| 187 | 159 | releldmi 5362 |
. . . . . . . . . . . . 13
⊢ (seq𝑁( + , 𝐹) ⇝ (1 − (seq1( + , 𝐹)‘(𝑁 − 1))) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 188 | 186, 187 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ (𝑁 − 1) ∈ ℕ)
→ seq𝑁( + , 𝐹) ∈ dom ⇝
) |
| 189 | 164, 171,
188 | syl2anc 693 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ ¬
𝑁 = 1) → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 190 | 163, 189 | pm2.61dan 832 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
| 191 | 125, 59, 145, 156, 190 | isumrecl 14496 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈
(ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))) ∈ ℝ) |
| 192 | 126 | nnrpd 11870 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 𝑗 ∈ ℝ+) |
| 193 | 192 | rpge0d 11876 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ 𝑗) |
| 194 | 146, 193 | ge0p1rpd 11902 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 + 1) ∈
ℝ+) |
| 195 | 192, 194 | rpmulcld 11888 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → (𝑗 · (𝑗 + 1)) ∈
ℝ+) |
| 196 | 123 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ 1) |
| 197 | 147, 195,
196 | divge0d 11912 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘𝑁)) → 0 ≤ (1 / (𝑗 · (𝑗 + 1)))) |
| 198 | 125, 59, 145, 156, 190, 197 | isumge0 14497 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤
Σ𝑗 ∈
(ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1)))) |
| 199 | 120, 191,
115, 198 | leadd2dd 10642 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1))) + 0) ≤ (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))))) |
| 200 | 115 | recnd 10068 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 201 | 200 | addid1d 10236 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ →
(Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1))) + 0) = Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1)))) |
| 202 | 201 | eqcomd 2628 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + 0)) |
| 203 | | id 22 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 204 | 144 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 205 | 138 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℂ) |
| 206 | | 1cnd 10056 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℂ) |
| 207 | 205, 206 | addcld 10059 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ∈
ℂ) |
| 208 | 205, 207 | mulcld 10060 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ∈ ℂ) |
| 209 | 141 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ≠ 0) |
| 210 | 103 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 + 1) ≠ 0) |
| 211 | 205, 207,
209, 210 | mulne0d 10679 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝑗 · (𝑗 + 1)) ≠ 0) |
| 212 | 208, 211 | reccld 10794 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 /
(𝑗 · (𝑗 + 1))) ∈
ℂ) |
| 213 | 158, 160 | mp1i 13 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → seq1( + ,
𝐹) ∈ dom ⇝
) |
| 214 | 178, 125,
203, 204, 212, 213 | isumsplit 14572 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ ℕ (1
/ (𝑗 · (𝑗 + 1))) = (Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) + Σ𝑗 ∈ (ℤ≥‘𝑁)(1 / (𝑗 · (𝑗 + 1))))) |
| 215 | 199, 202,
214 | 3brtr4d 4685 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ Σ𝑗 ∈ ℕ (1 / (𝑗 · (𝑗 + 1)))) |
| 216 | | 1zzd 11408 |
. . . . . . . . 9
⊢ (⊤
→ 1 ∈ ℤ) |
| 217 | 144 | adantl 482 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (𝐹‘𝑗) = (1 / (𝑗 · (𝑗 + 1)))) |
| 218 | 180 | adantl 482 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑗
∈ ℕ) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 219 | 158 | a1i 11 |
. . . . . . . . 9
⊢ (⊤
→ seq1( + , 𝐹) ⇝
1) |
| 220 | 178, 216,
217, 218, 219 | isumclim 14488 |
. . . . . . . 8
⊢ (⊤
→ Σ𝑗 ∈
ℕ (1 / (𝑗 ·
(𝑗 + 1))) =
1) |
| 221 | 220 | trud 1493 |
. . . . . . 7
⊢
Σ𝑗 ∈
ℕ (1 / (𝑗 ·
(𝑗 + 1))) =
1 |
| 222 | 215, 221 | syl6breq 4694 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))(1 / (𝑗 · (𝑗 + 1))) ≤ 1) |
| 223 | 115, 116,
32, 124, 222 | lemul2ad 10964 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1)))) ≤ ((1 / 4) ·
1)) |
| 224 | | 4cn 11098 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
| 225 | 224 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ∈
ℂ) |
| 226 | 117 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 <
4) |
| 227 | 226 | gt0ne0d 10592 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 4 ≠
0) |
| 228 | 225, 227 | reccld 10794 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 / 4)
∈ ℂ) |
| 229 | 107 | recnd 10068 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (1...(𝑁 − 1))) → (1 / (𝑗 · (𝑗 + 1))) ∈ ℂ) |
| 230 | 64, 228, 229 | fsummulc2 14516 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· Σ𝑗 ∈
(1...(𝑁 − 1))(1 /
(𝑗 · (𝑗 + 1)))) = Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1 / (𝑗 · (𝑗 + 1))))) |
| 231 | 228 | mulid1d 10057 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / 4)
· 1) = (1 / 4)) |
| 232 | 223, 230,
231 | 3brtr3d 4684 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((1 / 4) · (1
/ (𝑗 · (𝑗 + 1)))) ≤ (1 /
4)) |
| 233 | 93, 109, 32, 114, 232 | letrd 10194 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑗 ∈ (1...(𝑁 − 1))((𝐵‘𝑗) − (𝐵‘(𝑗 + 1))) ≤ (1 / 4)) |
| 234 | 63, 233 | eqbrtrd 4675 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (𝐵‘𝑁)) ≤ (1 / 4)) |
| 235 | 18, 28, 32, 234 | subled 10630 |
1
⊢ (𝑁 ∈ ℕ → ((𝐵‘1) − (1 / 4)) ≤
(𝐵‘𝑁)) |