Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem2 Structured version   Visualization version   Unicode version

Theorem stirlinglem2 40292
Description:  A maps to positive reals. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypothesis
Ref Expression
stirlinglem2.1  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
Assertion
Ref Expression
stirlinglem2  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )

Proof of Theorem stirlinglem2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 11299 . . . . 5  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 13070 . . . . 5  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
3 nnrp 11842 . . . . 5  |-  ( ( ! `  N )  e.  NN  ->  ( ! `  N )  e.  RR+ )
41, 2, 33syl 18 . . . 4  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR+ )
5 2rp 11837 . . . . . . . 8  |-  2  e.  RR+
65a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  2  e.  RR+ )
7 nnrp 11842 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  RR+ )
86, 7rpmulcld 11888 . . . . . 6  |-  ( N  e.  NN  ->  (
2  x.  N )  e.  RR+ )
98rpsqrtcld 14150 . . . . 5  |-  ( N  e.  NN  ->  ( sqr `  ( 2  x.  N ) )  e.  RR+ )
10 epr 14936 . . . . . . . 8  |-  _e  e.  RR+
1110a1i 11 . . . . . . 7  |-  ( N  e.  NN  ->  _e  e.  RR+ )
127, 11rpdivcld 11889 . . . . . 6  |-  ( N  e.  NN  ->  ( N  /  _e )  e.  RR+ )
13 nnz 11399 . . . . . 6  |-  ( N  e.  NN  ->  N  e.  ZZ )
1412, 13rpexpcld 13032 . . . . 5  |-  ( N  e.  NN  ->  (
( N  /  _e ) ^ N )  e.  RR+ )
159, 14rpmulcld 11888 . . . 4  |-  ( N  e.  NN  ->  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) )  e.  RR+ )
164, 15rpdivcld 11889 . . 3  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )
17 stirlinglem2.1 . . . . . 6  |-  A  =  ( n  e.  NN  |->  ( ( ! `  n )  /  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) ) ) )
18 fveq2 6191 . . . . . . . 8  |-  ( n  =  k  ->  ( ! `  n )  =  ( ! `  k ) )
19 oveq2 6658 . . . . . . . . . 10  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
2019fveq2d 6195 . . . . . . . . 9  |-  ( n  =  k  ->  ( sqr `  ( 2  x.  n ) )  =  ( sqr `  (
2  x.  k ) ) )
21 oveq1 6657 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  /  _e )  =  ( k  /  _e ) )
22 id 22 . . . . . . . . . 10  |-  ( n  =  k  ->  n  =  k )
2321, 22oveq12d 6668 . . . . . . . . 9  |-  ( n  =  k  ->  (
( n  /  _e ) ^ n )  =  ( ( k  /  _e ) ^ k ) )
2420, 23oveq12d 6668 . . . . . . . 8  |-  ( n  =  k  ->  (
( sqr `  (
2  x.  n ) )  x.  ( ( n  /  _e ) ^ n ) )  =  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )
2518, 24oveq12d 6668 . . . . . . 7  |-  ( n  =  k  ->  (
( ! `  n
)  /  ( ( sqr `  ( 2  x.  n ) )  x.  ( ( n  /  _e ) ^
n ) ) )  =  ( ( ! `
 k )  / 
( ( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
2625cbvmptv 4750 . . . . . 6  |-  ( n  e.  NN  |->  ( ( ! `  n )  /  ( ( sqr `  ( 2  x.  n
) )  x.  (
( n  /  _e ) ^ n ) ) ) )  =  ( k  e.  NN  |->  ( ( ! `  k
)  /  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^
k ) ) ) )
2717, 26eqtri 2644 . . . . 5  |-  A  =  ( k  e.  NN  |->  ( ( ! `  k )  /  (
( sqr `  (
2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) ) ) )
2827a1i 11 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  A  =  ( k  e.  NN  |->  ( ( ! `  k )  /  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) ) ) )
29 simpr 477 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  k  =  N )
3029fveq2d 6195 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( ! `  k )  =  ( ! `  N ) )
3129oveq2d 6666 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( 2  x.  k )  =  ( 2  x.  N
) )
3231fveq2d 6195 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( sqr `  ( 2  x.  k
) )  =  ( sqr `  ( 2  x.  N ) ) )
3329oveq1d 6665 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( k  /  _e )  =  ( N  /  _e ) )
3433, 29oveq12d 6668 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( (
k  /  _e ) ^ k )  =  ( ( N  /  _e ) ^ N ) )
3532, 34oveq12d 6668 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( ( sqr `  ( 2  x.  k ) )  x.  ( ( k  /  _e ) ^ k ) )  =  ( ( sqr `  ( 2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )
3630, 35oveq12d 6668 . . . 4  |-  ( ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  /\  k  =  N
)  ->  ( ( ! `  k )  /  ( ( sqr `  ( 2  x.  k
) )  x.  (
( k  /  _e ) ^ k ) ) )  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
37 simpl 473 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  N  e.  NN )
38 simpr 477 . . . 4  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )
3928, 36, 37, 38fvmptd 6288 . . 3  |-  ( ( N  e.  NN  /\  ( ( ! `  N )  /  (
( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) )  e.  RR+ )  ->  ( A `  N
)  =  ( ( ! `  N )  /  ( ( sqr `  ( 2  x.  N
) )  x.  (
( N  /  _e ) ^ N ) ) ) )
4016, 39mpdan 702 . 2  |-  ( N  e.  NN  ->  ( A `  N )  =  ( ( ! `
 N )  / 
( ( sqr `  (
2  x.  N ) )  x.  ( ( N  /  _e ) ^ N ) ) ) )
4140, 16eqeltrd 2701 1  |-  ( N  e.  NN  ->  ( A `  N )  e.  RR+ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    x. cmul 9941    / cdiv 10684   NNcn 11020   2c2 11070   NN0cn0 11292   RR+crp 11832   ^cexp 12860   !cfa 13060   sqrcsqrt 13973   _eceu 14793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-e 14799
This theorem is referenced by:  stirlinglem4  40294  stirlinglem11  40301  stirlinglem12  40302  stirlinglem13  40303  stirlinglem14  40304
  Copyright terms: Public domain W3C validator