| Step | Hyp | Ref
| Expression |
| 1 | | 0red 10041 |
. . 3
⊢ (𝑁 ∈ ℕ → 0 ∈
ℝ) |
| 2 | | stirlinglem11.3 |
. . . . . 6
⊢ 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 ·
𝑘) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑘)))) |
| 3 | 2 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 ·
𝑘) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑘))))) |
| 4 | | simpr 477 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1) |
| 5 | 4 | oveq2d 6666 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 ·
1)) |
| 6 | 5 | oveq1d 6665 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) +
1)) |
| 7 | 6 | oveq2d 6666 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 ·
𝑘) + 1)) = (1 / ((2
· 1) + 1))) |
| 8 | 5 | oveq2d 6666 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 ·
𝑁) + 1))↑(2 ·
𝑘)) = ((1 / ((2 ·
𝑁) + 1))↑(2 ·
1))) |
| 9 | 7, 8 | oveq12d 6668 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 ·
𝑘) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑘))) = ((1 / ((2
· 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 ·
1)))) |
| 10 | | 1nn 11031 |
. . . . . 6
⊢ 1 ∈
ℕ |
| 11 | 10 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 1 ∈
ℕ) |
| 12 | | 2cnd 11093 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) |
| 13 | | 1cnd 10056 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
| 14 | 12, 13 | mulcld 10060 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (2
· 1) ∈ ℂ) |
| 15 | 14, 13 | addcld 10059 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((2
· 1) + 1) ∈ ℂ) |
| 16 | | 2t1e2 11176 |
. . . . . . . . . . 11
⊢ (2
· 1) = 2 |
| 17 | 16 | oveq1i 6660 |
. . . . . . . . . 10
⊢ ((2
· 1) + 1) = (2 + 1) |
| 18 | | 2p1e3 11151 |
. . . . . . . . . 10
⊢ (2 + 1) =
3 |
| 19 | 17, 18 | eqtri 2644 |
. . . . . . . . 9
⊢ ((2
· 1) + 1) = 3 |
| 20 | | 3ne0 11115 |
. . . . . . . . 9
⊢ 3 ≠
0 |
| 21 | 19, 20 | eqnetri 2864 |
. . . . . . . 8
⊢ ((2
· 1) + 1) ≠ 0 |
| 22 | 21 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((2
· 1) + 1) ≠ 0) |
| 23 | 15, 22 | reccld 10794 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 1) + 1)) ∈ ℂ) |
| 24 | | nncn 11028 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 25 | 12, 24 | mulcld 10060 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) ∈
ℂ) |
| 26 | 25, 13 | addcld 10059 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) + 1) ∈
ℂ) |
| 27 | | 1red 10055 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
| 28 | | 2re 11090 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
| 29 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 2 ∈
ℝ) |
| 30 | | nnre 11027 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 31 | 29, 30 | remulcld 10070 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) ∈
ℝ) |
| 32 | 31, 27 | readdcld 10069 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) + 1) ∈
ℝ) |
| 33 | | 0lt1 10550 |
. . . . . . . . . . 11
⊢ 0 <
1 |
| 34 | 33 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 0 <
1) |
| 35 | | 2rp 11837 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ+ |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 2 ∈
ℝ+) |
| 37 | | nnrp 11842 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 38 | 36, 37 | rpmulcld 11888 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) ∈
ℝ+) |
| 39 | 27, 38 | ltaddrp2d 11906 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 1 <
((2 · 𝑁) +
1)) |
| 40 | 1, 27, 32, 34, 39 | lttrd 10198 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 <
((2 · 𝑁) +
1)) |
| 41 | 40 | gt0ne0d 10592 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) + 1) ≠
0) |
| 42 | 26, 41 | reccld 10794 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 𝑁) + 1)) ∈
ℂ) |
| 43 | | 2nn0 11309 |
. . . . . . . . 9
⊢ 2 ∈
ℕ0 |
| 44 | 43 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ0) |
| 45 | | 1nn0 11308 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
| 46 | 45 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 1 ∈
ℕ0) |
| 47 | 44, 46 | nn0mulcld 11356 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (2
· 1) ∈ ℕ0) |
| 48 | 42, 47 | expcld 13008 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 𝑁) + 1))↑(2
· 1)) ∈ ℂ) |
| 49 | 23, 48 | mulcld 10060 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈
ℂ) |
| 50 | 3, 9, 11, 49 | fvmptd 6288 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 ·
1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 ·
1)))) |
| 51 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 52 | 28, 51 | remulcli 10054 |
. . . . . . . 8
⊢ (2
· 1) ∈ ℝ |
| 53 | 52, 51 | readdcli 10053 |
. . . . . . 7
⊢ ((2
· 1) + 1) ∈ ℝ |
| 54 | 53, 21 | rereccli 10790 |
. . . . . 6
⊢ (1 / ((2
· 1) + 1)) ∈ ℝ |
| 55 | 54 | a1i 11 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 1) + 1)) ∈ ℝ) |
| 56 | 32, 41 | rereccld 10852 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 𝑁) + 1)) ∈
ℝ) |
| 57 | 56, 47 | reexpcld 13025 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 𝑁) + 1))↑(2
· 1)) ∈ ℝ) |
| 58 | 55, 57 | remulcld 10070 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈
ℝ) |
| 59 | 50, 58 | eqeltrd 2701 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐾‘1) ∈
ℝ) |
| 60 | | stirlinglem11.1 |
. . . . . . . 8
⊢ 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 61 | 60 | stirlinglem2 40292 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝐴‘𝑁) ∈
ℝ+) |
| 62 | 61 | relogcld 24369 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(log‘(𝐴‘𝑁)) ∈
ℝ) |
| 63 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑛𝑁 |
| 64 | | nfcv 2764 |
. . . . . . . 8
⊢
Ⅎ𝑛log |
| 65 | | nfmpt1 4747 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 ·
𝑛)) · ((𝑛 / e)↑𝑛)))) |
| 66 | 60, 65 | nfcxfr 2762 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝐴 |
| 67 | 66, 63 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝐴‘𝑁) |
| 68 | 64, 67 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑛(log‘(𝐴‘𝑁)) |
| 69 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑛 = 𝑁 → (𝐴‘𝑛) = (𝐴‘𝑁)) |
| 70 | 69 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑛 = 𝑁 → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘𝑁))) |
| 71 | | stirlinglem11.2 |
. . . . . . 7
⊢ 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴‘𝑛))) |
| 72 | 63, 68, 70, 71 | fvmptf 6301 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧
(log‘(𝐴‘𝑁)) ∈ ℝ) → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 73 | 62, 72 | mpdan 702 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) = (log‘(𝐴‘𝑁))) |
| 74 | 73, 62 | eqeltrd 2701 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) ∈ ℝ) |
| 75 | | peano2nn 11032 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈
ℕ) |
| 76 | 60 | stirlinglem2 40292 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℕ →
(𝐴‘(𝑁 + 1)) ∈
ℝ+) |
| 77 | 75, 76 | syl 17 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈
ℝ+) |
| 78 | 77 | relogcld 24369 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(log‘(𝐴‘(𝑁 + 1))) ∈
ℝ) |
| 79 | | nfcv 2764 |
. . . . . . 7
⊢
Ⅎ𝑛(𝑁 + 1) |
| 80 | 66, 79 | nffv 6198 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝐴‘(𝑁 + 1)) |
| 81 | 64, 80 | nffv 6198 |
. . . . . . 7
⊢
Ⅎ𝑛(log‘(𝐴‘(𝑁 + 1))) |
| 82 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑛 = (𝑁 + 1) → (𝐴‘𝑛) = (𝐴‘(𝑁 + 1))) |
| 83 | 82 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑛 = (𝑁 + 1) → (log‘(𝐴‘𝑛)) = (log‘(𝐴‘(𝑁 + 1)))) |
| 84 | 79, 81, 83, 71 | fvmptf 6301 |
. . . . . 6
⊢ (((𝑁 + 1) ∈ ℕ ∧
(log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) →
(𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1)))) |
| 85 | 75, 78, 84 | syl2anc 693 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1)))) |
| 86 | 85, 78 | eqeltrd 2701 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ) |
| 87 | 74, 86 | resubcld 10458 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ) |
| 88 | 29, 27 | remulcld 10070 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (2
· 1) ∈ ℝ) |
| 89 | | 0le2 11111 |
. . . . . . . . . 10
⊢ 0 ≤
2 |
| 90 | 89 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤
2) |
| 91 | | 0le1 10551 |
. . . . . . . . . 10
⊢ 0 ≤
1 |
| 92 | 91 | a1i 11 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤
1) |
| 93 | 29, 27, 90, 92 | mulge0d 10604 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 0 ≤ (2
· 1)) |
| 94 | 88, 93 | ge0p1rpd 11902 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → ((2
· 1) + 1) ∈ ℝ+) |
| 95 | 94 | rpreccld 11882 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 1) + 1)) ∈ ℝ+) |
| 96 | 37 | rpge0d 11876 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → 0 ≤
𝑁) |
| 97 | 29, 30, 90, 96 | mulge0d 10604 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 0 ≤ (2
· 𝑁)) |
| 98 | 31, 97 | ge0p1rpd 11902 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((2
· 𝑁) + 1) ∈
ℝ+) |
| 99 | 98 | rpreccld 11882 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (1 / ((2
· 𝑁) + 1)) ∈
ℝ+) |
| 100 | | 2z 11409 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 101 | 100 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 2 ∈
ℤ) |
| 102 | | 1z 11407 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
| 103 | 102 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) |
| 104 | 101, 103 | zmulcld 11488 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (2
· 1) ∈ ℤ) |
| 105 | 99, 104 | rpexpcld 13032 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 𝑁) + 1))↑(2
· 1)) ∈ ℝ+) |
| 106 | 95, 105 | rpmulcld 11888 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((1 / ((2
· 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈
ℝ+) |
| 107 | 50, 106 | eqeltrd 2701 |
. . . 4
⊢ (𝑁 ∈ ℕ → (𝐾‘1) ∈
ℝ+) |
| 108 | 107 | rpgt0d 11875 |
. . 3
⊢ (𝑁 ∈ ℕ → 0 <
(𝐾‘1)) |
| 109 | 87, 59 | resubcld 10458 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ) |
| 110 | | eqid 2622 |
. . . . . . 7
⊢
(ℤ≥‘(1 + 1)) =
(ℤ≥‘(1 + 1)) |
| 111 | 103 | peano2zd 11485 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (1 + 1)
∈ ℤ) |
| 112 | | nnuz 11723 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 113 | 2 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 ·
𝑘) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑘))))) |
| 114 | | oveq2 6658 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗)) |
| 115 | 114 | oveq1d 6665 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1)) |
| 116 | 115 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1))) |
| 117 | 114 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) |
| 118 | 116, 117 | oveq12d 6668 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑗)))) |
| 119 | 118 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑘))) = ((1 / ((2
· 𝑗) + 1)) ·
((1 / ((2 · 𝑁) +
1))↑(2 · 𝑗)))) |
| 120 | | simpr 477 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ) |
| 121 | | 2cnd 11093 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈
ℂ) |
| 122 | | nncn 11028 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℂ) |
| 123 | 122 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℂ) |
| 124 | 121, 123 | mulcld 10060 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2
· 𝑗) ∈
ℂ) |
| 125 | | 1cnd 10056 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℂ) |
| 126 | 124, 125 | addcld 10059 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑗) + 1) ∈
ℂ) |
| 127 | | 0red 10041 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈
ℝ) |
| 128 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈
ℝ) |
| 129 | 28 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈
ℝ) |
| 130 | | nnre 11027 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ) |
| 131 | 130 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℝ) |
| 132 | 129, 131 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2
· 𝑗) ∈
ℝ) |
| 133 | 132, 128 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑗) + 1) ∈
ℝ) |
| 134 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 <
1) |
| 135 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈
ℝ+) |
| 136 | | nnrp 11842 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℝ+) |
| 137 | 136 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℝ+) |
| 138 | 135, 137 | rpmulcld 11888 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2
· 𝑗) ∈
ℝ+) |
| 139 | 128, 138 | ltaddrp2d 11906 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 <
((2 · 𝑗) +
1)) |
| 140 | 127, 128,
133, 134, 139 | lttrd 10198 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 <
((2 · 𝑗) +
1)) |
| 141 | 140 | gt0ne0d 10592 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑗) + 1) ≠
0) |
| 142 | 126, 141 | reccld 10794 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2
· 𝑗) + 1)) ∈
ℂ) |
| 143 | 24 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈
ℂ) |
| 144 | 121, 143 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2
· 𝑁) ∈
ℂ) |
| 145 | 144, 125 | addcld 10059 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑁) + 1) ∈
ℂ) |
| 146 | 41 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑁) + 1) ≠
0) |
| 147 | 145, 146 | reccld 10794 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2
· 𝑁) + 1)) ∈
ℂ) |
| 148 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈
ℕ0) |
| 149 | | nnnn0 11299 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 𝑗 ∈
ℕ0) |
| 150 | 149 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈
ℕ0) |
| 151 | 148, 150 | nn0mulcld 11356 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2
· 𝑗) ∈
ℕ0) |
| 152 | 147, 151 | expcld 13008 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 /
((2 · 𝑁) +
1))↑(2 · 𝑗))
∈ ℂ) |
| 153 | 142, 152 | mulcld 10060 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 /
((2 · 𝑗) + 1))
· ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ) |
| 154 | 113, 119,
120, 153 | fvmptd 6288 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))) |
| 155 | | 0red 10041 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 0 ∈
ℝ) |
| 156 | | 1red 10055 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 1 ∈
ℝ) |
| 157 | 28 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 2 ∈
ℝ) |
| 158 | 157, 130 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ∈
ℝ) |
| 159 | 158, 156 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) + 1) ∈
ℝ) |
| 160 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 0 <
1) |
| 161 | 35 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ ℕ → 2 ∈
ℝ+) |
| 162 | 161, 136 | rpmulcld 11888 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ℕ → (2
· 𝑗) ∈
ℝ+) |
| 163 | 156, 162 | ltaddrp2d 11906 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ → 1 <
((2 · 𝑗) +
1)) |
| 164 | 155, 156,
159, 160, 163 | lttrd 10198 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ → 0 <
((2 · 𝑗) +
1)) |
| 165 | 164 | gt0ne0d 10592 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ → ((2
· 𝑗) + 1) ≠
0) |
| 166 | 165 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2
· 𝑗) + 1) ≠
0) |
| 167 | 126, 166 | reccld 10794 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2
· 𝑗) + 1)) ∈
ℂ) |
| 168 | 167, 152 | mulcld 10060 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 /
((2 · 𝑗) + 1))
· ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ) |
| 169 | 154, 168 | eqeltrd 2701 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾‘𝑗) ∈ ℂ) |
| 170 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((((1 +
(2 · 𝑛)) / 2)
· (log‘((𝑛 +
1) / 𝑛))) − 1)) =
(𝑛 ∈ ℕ ↦
((((1 + (2 · 𝑛)) /
2) · (log‘((𝑛
+ 1) / 𝑛))) −
1)) |
| 171 | 60, 71, 170, 2 | stirlinglem9 40299 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → seq1( + ,
𝐾) ⇝ ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) |
| 172 | 112, 11, 169, 171 | clim2ser 14385 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → seq(1 +
1)( + , 𝐾) ⇝ (((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1))) |
| 173 | | peano2nn 11032 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℕ → (1 + 1) ∈ ℕ) |
| 174 | | uznnssnn 11735 |
. . . . . . . . . . . . 13
⊢ ((1 + 1)
∈ ℕ → (ℤ≥‘(1 + 1)) ⊆
ℕ) |
| 175 | 10, 173, 174 | mp2b 10 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘(1 + 1)) ⊆ ℕ |
| 176 | 175 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ →
(ℤ≥‘(1 + 1)) ⊆ ℕ) |
| 177 | 176 | sseld 3602 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑗 ∈
(ℤ≥‘(1 + 1)) → 𝑗 ∈ ℕ)) |
| 178 | 177 | imdistani 726 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ)) |
| 179 | 178, 154 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (𝐾‘𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))) |
| 180 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 2 ∈
ℝ) |
| 181 | | eluzelre 11698 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 𝑗 ∈ ℝ) |
| 182 | 180, 181 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → (2 · 𝑗) ∈ ℝ) |
| 183 | | 1red 10055 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 1 ∈
ℝ) |
| 184 | 182, 183 | readdcld 10069 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ) |
| 185 | 175 | sseli 3599 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 𝑗 ∈ ℕ) |
| 186 | 185, 165 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0) |
| 187 | 184, 186 | rereccld 10852 |
. . . . . . . . . 10
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈
ℝ) |
| 188 | 187 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈
ℝ) |
| 189 | 32 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ) |
| 190 | 41 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0) |
| 191 | 189, 190 | rereccld 10852 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈
ℝ) |
| 192 | 178, 151 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (2 · 𝑗) ∈
ℕ0) |
| 193 | 191, 192 | reexpcld 13025 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈
ℝ) |
| 194 | 188, 193 | remulcld 10070 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑗))) ∈
ℝ) |
| 195 | 179, 194 | eqeltrd 2701 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (𝐾‘𝑗) ∈ ℝ) |
| 196 | | 1red 10055 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 1 ∈
ℝ) |
| 197 | 28 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 2 ∈
ℝ) |
| 198 | 178, 131 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 𝑗 ∈ ℝ) |
| 199 | 197, 198 | remulcld 10070 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (2 · 𝑗) ∈ ℝ) |
| 200 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ 2) |
| 201 | | 0red 10041 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 0 ∈
ℝ) |
| 202 | 89 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 0 ≤ 2) |
| 203 | | 1p1e2 11134 |
. . . . . . . . . . . . . . 15
⊢ (1 + 1) =
2 |
| 204 | | eluzle 11700 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → (1 + 1) ≤ 𝑗) |
| 205 | 203, 204 | syl5eqbrr 4689 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 2 ≤ 𝑗) |
| 206 | 201, 180,
181, 202, 205 | letrd 10194 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈
(ℤ≥‘(1 + 1)) → 0 ≤ 𝑗) |
| 207 | 206 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ 𝑗) |
| 208 | 197, 198,
200, 207 | mulge0d 10604 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ (2 · 𝑗)) |
| 209 | 199, 208 | ge0p1rpd 11902 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((2 · 𝑗) + 1) ∈
ℝ+) |
| 210 | 91 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ 1) |
| 211 | 196, 209,
210 | divge0d 11912 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1))) |
| 212 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 𝑁 ∈ ℝ) |
| 213 | 197, 212 | remulcld 10070 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → (2 · 𝑁) ∈ ℝ) |
| 214 | 96 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ 𝑁) |
| 215 | 197, 212,
200, 214 | mulge0d 10604 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ (2 · 𝑁)) |
| 216 | 213, 215 | ge0p1rpd 11902 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → ((2 · 𝑁) + 1) ∈
ℝ+) |
| 217 | 196, 216,
210 | divge0d 11912 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1))) |
| 218 | 191, 192,
217 | expge0d 13026 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) |
| 219 | 188, 193,
211, 218 | mulge0d 10604 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2
· 𝑁) + 1))↑(2
· 𝑗)))) |
| 220 | 219, 179 | breqtrrd 4681 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑗 ∈
(ℤ≥‘(1 + 1))) → 0 ≤ (𝐾‘𝑗)) |
| 221 | 110, 111,
172, 195, 220 | iserge0 14391 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 0 ≤
(((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1))) |
| 222 | | seq1 12814 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1)) |
| 223 | 102, 222 | mp1i 13 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (seq1( +
, 𝐾)‘1) = (𝐾‘1)) |
| 224 | 223 | oveq2d 6666 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1))) |
| 225 | 221, 224 | breqtrd 4679 |
. . . . 5
⊢ (𝑁 ∈ ℕ → 0 ≤
(((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1))) |
| 226 | 1, 109, 59, 225 | leadd1dd 10641 |
. . . 4
⊢ (𝑁 ∈ ℕ → (0 +
(𝐾‘1)) ≤ ((((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1))) |
| 227 | 50, 49 | eqeltrd 2701 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝐾‘1) ∈
ℂ) |
| 228 | 227 | addid2d 10237 |
. . . 4
⊢ (𝑁 ∈ ℕ → (0 +
(𝐾‘1)) = (𝐾‘1)) |
| 229 | 74 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝐵‘𝑁) ∈ ℂ) |
| 230 | 86 | recnd 10068 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ) |
| 231 | 229, 230 | subcld 10392 |
. . . . 5
⊢ (𝑁 ∈ ℕ → ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ) |
| 232 | 231, 227 | npcand 10396 |
. . . 4
⊢ (𝑁 ∈ ℕ → ((((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) |
| 233 | 226, 228,
232 | 3brtr3d 4684 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) |
| 234 | 1, 59, 87, 108, 233 | ltletrd 10197 |
. 2
⊢ (𝑁 ∈ ℕ → 0 <
((𝐵‘𝑁) − (𝐵‘(𝑁 + 1)))) |
| 235 | 86, 74 | posdifd 10614 |
. 2
⊢ (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵‘𝑁) ↔ 0 < ((𝐵‘𝑁) − (𝐵‘(𝑁 + 1))))) |
| 236 | 234, 235 | mpbird 247 |
1
⊢ (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵‘𝑁)) |