MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgptsmscld Structured version   Visualization version   GIF version

Theorem tgptsmscld 21954
Description: The set of limit points to an infinite sum in a topological group is closed. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
tgptsmscls.b 𝐵 = (Base‘𝐺)
tgptsmscls.j 𝐽 = (TopOpen‘𝐺)
tgptsmscls.1 (𝜑𝐺 ∈ CMnd)
tgptsmscls.2 (𝜑𝐺 ∈ TopGrp)
tgptsmscls.a (𝜑𝐴𝑉)
tgptsmscls.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
tgptsmscld (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))

Proof of Theorem tgptsmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 tgptsmscls.2 . . . . . 6 (𝜑𝐺 ∈ TopGrp)
2 tgptsmscls.j . . . . . . 7 𝐽 = (TopOpen‘𝐺)
3 tgptsmscls.b . . . . . . 7 𝐵 = (Base‘𝐺)
42, 3tgptopon 21886 . . . . . 6 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵))
51, 4syl 17 . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝐵))
6 topontop 20718 . . . . 5 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
75, 6syl 17 . . . 4 (𝜑𝐽 ∈ Top)
8 0cld 20842 . . . 4 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
97, 8syl 17 . . 3 (𝜑 → ∅ ∈ (Clsd‘𝐽))
10 eleq1 2689 . . 3 ((𝐺 tsums 𝐹) = ∅ → ((𝐺 tsums 𝐹) ∈ (Clsd‘𝐽) ↔ ∅ ∈ (Clsd‘𝐽)))
119, 10syl5ibrcom 237 . 2 (𝜑 → ((𝐺 tsums 𝐹) = ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
12 n0 3931 . . 3 ((𝐺 tsums 𝐹) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
13 tgptsmscls.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1413adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ CMnd)
151adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐺 ∈ TopGrp)
16 tgptsmscls.a . . . . . . . 8 (𝜑𝐴𝑉)
1716adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐴𝑉)
18 tgptsmscls.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
1918adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐹:𝐴𝐵)
20 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 ∈ (𝐺 tsums 𝐹))
213, 2, 14, 15, 17, 19, 20tgptsmscls 21953 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = ((cls‘𝐽)‘{𝑥}))
227adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝐽 ∈ Top)
23 tgptps 21884 . . . . . . . . . . . 12 (𝐺 ∈ TopGrp → 𝐺 ∈ TopSp)
241, 23syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ TopSp)
253, 13, 24, 16, 18tsmscl 21938 . . . . . . . . . 10 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐵)
26 toponuni 20719 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
275, 26syl 17 . . . . . . . . . 10 (𝜑𝐵 = 𝐽)
2825, 27sseqtrd 3641 . . . . . . . . 9 (𝜑 → (𝐺 tsums 𝐹) ⊆ 𝐽)
2928sselda 3603 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → 𝑥 𝐽)
3029snssd 4340 . . . . . . 7 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → {𝑥} ⊆ 𝐽)
31 eqid 2622 . . . . . . . 8 𝐽 = 𝐽
3231clscld 20851 . . . . . . 7 ((𝐽 ∈ Top ∧ {𝑥} ⊆ 𝐽) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
3322, 30, 32syl2anc 693 . . . . . 6 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → ((cls‘𝐽)‘{𝑥}) ∈ (Clsd‘𝐽))
3421, 33eqeltrd 2701 . . . . 5 ((𝜑𝑥 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
3534ex 450 . . . 4 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3635exlimdv 1861 . . 3 (𝜑 → (∃𝑥 𝑥 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3712, 36syl5bi 232 . 2 (𝜑 → ((𝐺 tsums 𝐹) ≠ ∅ → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽)))
3811, 37pm2.61dne 2880 1 (𝜑 → (𝐺 tsums 𝐹) ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wne 2794  wss 3574  c0 3915  {csn 4177   cuni 4436  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  TopOpenctopn 16082  CMndccmn 18193  Topctop 20698  TopOnctopon 20715  TopSpctps 20736  Clsdccld 20820  clsccl 20822  TopGrpctgp 21875   tsums ctsu 21929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-ec 7744  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-topgen 16104  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-eqg 17593  df-ghm 17658  df-cntz 17750  df-cmn 18195  df-abl 18196  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator