MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgredgsscusgredg Structured version   Visualization version   GIF version

Theorem usgredgsscusgredg 26355
Description: A simple graph is a subgraph of a complete simple graph. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 13-Nov-2020.)
Hypotheses
Ref Expression
fusgrmaxsize.v 𝑉 = (Vtx‘𝐺)
fusgrmaxsize.e 𝐸 = (Edg‘𝐺)
usgrsscusgra.h 𝑉 = (Vtx‘𝐻)
usgrsscusgra.f 𝐹 = (Edg‘𝐻)
Assertion
Ref Expression
usgredgsscusgredg ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)

Proof of Theorem usgredgsscusgredg
Dummy variables 𝑒 𝑎 𝑏 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgrmaxsize.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 fusgrmaxsize.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2usgredg 26091 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}))
4 usgrsscusgra.h . . . . . . . 8 𝑉 = (Vtx‘𝐻)
5 usgrsscusgra.f . . . . . . . 8 𝐹 = (Edg‘𝐻)
64, 5iscusgredg 26319 . . . . . . 7 (𝐻 ∈ ComplUSGraph ↔ (𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹))
7 sneq 4187 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑘} = {𝑎})
87difeq2d 3728 . . . . . . . . . . . 12 (𝑘 = 𝑎 → (𝑉 ∖ {𝑘}) = (𝑉 ∖ {𝑎}))
9 preq2 4269 . . . . . . . . . . . . 13 (𝑘 = 𝑎 → {𝑛, 𝑘} = {𝑛, 𝑎})
109eleq1d 2686 . . . . . . . . . . . 12 (𝑘 = 𝑎 → ({𝑛, 𝑘} ∈ 𝐹 ↔ {𝑛, 𝑎} ∈ 𝐹))
118, 10raleqbidv 3152 . . . . . . . . . . 11 (𝑘 = 𝑎 → (∀𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
1211rspcv 3305 . . . . . . . . . 10 (𝑎𝑉 → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹 → ∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹))
13 simpl 473 . . . . . . . . . . . . . . 15 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑎𝑏)
1413necomd 2849 . . . . . . . . . . . . . 14 ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → 𝑏𝑎)
1514anim2i 593 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝑏𝑉𝑏𝑎))
16 eldifsn 4317 . . . . . . . . . . . . 13 (𝑏 ∈ (𝑉 ∖ {𝑎}) ↔ (𝑏𝑉𝑏𝑎))
1715, 16sylibr 224 . . . . . . . . . . . 12 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
18 preq1 4268 . . . . . . . . . . . . . 14 (𝑛 = 𝑏 → {𝑛, 𝑎} = {𝑏, 𝑎})
1918eleq1d 2686 . . . . . . . . . . . . 13 (𝑛 = 𝑏 → ({𝑛, 𝑎} ∈ 𝐹 ↔ {𝑏, 𝑎} ∈ 𝐹))
2019rspcv 3305 . . . . . . . . . . . 12 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
2117, 20syl 17 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹 → {𝑏, 𝑎} ∈ 𝐹))
22 prcom 4267 . . . . . . . . . . . . . . . 16 {𝑎, 𝑏} = {𝑏, 𝑎}
2322eqeq2i 2634 . . . . . . . . . . . . . . 15 (𝑒 = {𝑎, 𝑏} ↔ 𝑒 = {𝑏, 𝑎})
24 eqcom 2629 . . . . . . . . . . . . . . 15 (𝑒 = {𝑏, 𝑎} ↔ {𝑏, 𝑎} = 𝑒)
2523, 24sylbb 209 . . . . . . . . . . . . . 14 (𝑒 = {𝑎, 𝑏} → {𝑏, 𝑎} = 𝑒)
2625eleq1d 2686 . . . . . . . . . . . . 13 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2726biimpd 219 . . . . . . . . . . . 12 (𝑒 = {𝑎, 𝑏} → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2827ad2antll 765 . . . . . . . . . . 11 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ({𝑏, 𝑎} ∈ 𝐹𝑒𝐹))
2921, 28syld 47 . . . . . . . . . 10 ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑛 ∈ (𝑉 ∖ {𝑎}){𝑛, 𝑎} ∈ 𝐹𝑒𝐹))
3012, 29syl9 77 . . . . . . . . 9 (𝑎𝑉 → ((𝑏𝑉 ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹)))
3130impl 650 . . . . . . . 8 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹𝑒𝐹))
3231adantld 483 . . . . . . 7 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → ((𝐻 ∈ USGraph ∧ ∀𝑘𝑉𝑛 ∈ (𝑉 ∖ {𝑘}){𝑛, 𝑘} ∈ 𝐹) → 𝑒𝐹))
336, 32syl5bi 232 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑒 = {𝑎, 𝑏})) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3433ex 450 . . . . 5 ((𝑎𝑉𝑏𝑉) → ((𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹)))
3534rexlimivv 3036 . . . 4 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑒 = {𝑎, 𝑏}) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
363, 35syl 17 . . 3 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (𝐻 ∈ ComplUSGraph → 𝑒𝐹))
3736impancom 456 . 2 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → (𝑒𝐸𝑒𝐹))
3837ssrdv 3609 1 ((𝐺 ∈ USGraph ∧ 𝐻 ∈ ComplUSGraph) → 𝐸𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  cdif 3571  wss 3574  {csn 4177  {cpr 4179  cfv 5888  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232
This theorem is referenced by:  usgrsscusgr  26356  sizusglecusglem1  26357
  Copyright terms: Public domain W3C validator