MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkp1 Structured version   Visualization version   Unicode version

Theorem wlkp1 26578
Description: Append one path segment (edge)  E from vertex  ( P `  N ) to a vertex  C to a walk  <. F ,  P >. to become a walk 
<. H ,  Q >. of the supergraph  S obtained by adding the new edge to the graph  G. Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 27076. (Contributed by Mario Carneiro, 7-Apr-2015.) (Revised by AV, 6-Mar-2021.) (Prove shortened by AV, 18-Apr-2021.)
Hypotheses
Ref Expression
wlkp1.v  |-  V  =  (Vtx `  G )
wlkp1.i  |-  I  =  (iEdg `  G )
wlkp1.f  |-  ( ph  ->  Fun  I )
wlkp1.a  |-  ( ph  ->  I  e.  Fin )
wlkp1.b  |-  ( ph  ->  B  e.  _V )
wlkp1.c  |-  ( ph  ->  C  e.  V )
wlkp1.d  |-  ( ph  ->  -.  B  e.  dom  I )
wlkp1.w  |-  ( ph  ->  F (Walks `  G
) P )
wlkp1.n  |-  N  =  ( # `  F
)
wlkp1.e  |-  ( ph  ->  E  e.  (Edg `  G ) )
wlkp1.x  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
wlkp1.u  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
wlkp1.h  |-  H  =  ( F  u.  { <. N ,  B >. } )
wlkp1.q  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
wlkp1.s  |-  ( ph  ->  (Vtx `  S )  =  V )
wlkp1.l  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
Assertion
Ref Expression
wlkp1  |-  ( ph  ->  H (Walks `  S
) Q )

Proof of Theorem wlkp1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 wlkp1.w . . . . . 6  |-  ( ph  ->  F (Walks `  G
) P )
2 wlkp1.i . . . . . . 7  |-  I  =  (iEdg `  G )
32wlkf 26510 . . . . . 6  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
4 wrdf 13310 . . . . . . 7  |-  ( F  e. Word  dom  I  ->  F : ( 0..^ (
# `  F )
) --> dom  I )
5 wlkp1.n . . . . . . . . . 10  |-  N  =  ( # `  F
)
65eqcomi 2631 . . . . . . . . 9  |-  ( # `  F )  =  N
76oveq2i 6661 . . . . . . . 8  |-  ( 0..^ ( # `  F
) )  =  ( 0..^ N )
87feq2i 6037 . . . . . . 7  |-  ( F : ( 0..^ (
# `  F )
) --> dom  I  <->  F :
( 0..^ N ) --> dom  I )
94, 8sylib 208 . . . . . 6  |-  ( F  e. Word  dom  I  ->  F : ( 0..^ N ) --> dom  I )
101, 3, 93syl 18 . . . . 5  |-  ( ph  ->  F : ( 0..^ N ) --> dom  I
)
11 fvex 6201 . . . . . . . 8  |-  ( # `  F )  e.  _V
125, 11eqeltri 2697 . . . . . . 7  |-  N  e. 
_V
1312a1i 11 . . . . . 6  |-  ( ph  ->  N  e.  _V )
14 wlkp1.b . . . . . . . 8  |-  ( ph  ->  B  e.  _V )
15 snidg 4206 . . . . . . . 8  |-  ( B  e.  _V  ->  B  e.  { B } )
1614, 15syl 17 . . . . . . 7  |-  ( ph  ->  B  e.  { B } )
17 wlkp1.e . . . . . . . 8  |-  ( ph  ->  E  e.  (Edg `  G ) )
18 dmsnopg 5606 . . . . . . . 8  |-  ( E  e.  (Edg `  G
)  ->  dom  { <. B ,  E >. }  =  { B } )
1917, 18syl 17 . . . . . . 7  |-  ( ph  ->  dom  { <. B ,  E >. }  =  { B } )
2016, 19eleqtrrd 2704 . . . . . 6  |-  ( ph  ->  B  e.  dom  { <. B ,  E >. } )
2113, 20fsnd 6179 . . . . 5  |-  ( ph  ->  { <. N ,  B >. } : { N }
--> dom  { <. B ,  E >. } )
22 fzodisjsn 12505 . . . . . 6  |-  ( ( 0..^ N )  i^i 
{ N } )  =  (/)
2322a1i 11 . . . . 5  |-  ( ph  ->  ( ( 0..^ N )  i^i  { N } )  =  (/) )
24 fun 6066 . . . . 5  |-  ( ( ( F : ( 0..^ N ) --> dom  I  /\  { <. N ,  B >. } : { N } --> dom  { <. B ,  E >. } )  /\  ( ( 0..^ N )  i^i 
{ N } )  =  (/) )  ->  ( F  u.  { <. N ,  B >. } ) : ( ( 0..^ N )  u.  { N } ) --> ( dom  I  u.  dom  { <. B ,  E >. } ) )
2510, 21, 23, 24syl21anc 1325 . . . 4  |-  ( ph  ->  ( F  u.  { <. N ,  B >. } ) : ( ( 0..^ N )  u. 
{ N } ) --> ( dom  I  u. 
dom  { <. B ,  E >. } ) )
26 wlkp1.h . . . . . 6  |-  H  =  ( F  u.  { <. N ,  B >. } )
2726a1i 11 . . . . 5  |-  ( ph  ->  H  =  ( F  u.  { <. N ,  B >. } ) )
28 wlkp1.v . . . . . . . 8  |-  V  =  (Vtx `  G )
29 wlkp1.f . . . . . . . 8  |-  ( ph  ->  Fun  I )
30 wlkp1.a . . . . . . . 8  |-  ( ph  ->  I  e.  Fin )
31 wlkp1.c . . . . . . . 8  |-  ( ph  ->  C  e.  V )
32 wlkp1.d . . . . . . . 8  |-  ( ph  ->  -.  B  e.  dom  I )
33 wlkp1.x . . . . . . . 8  |-  ( ph  ->  { ( P `  N ) ,  C }  C_  E )
34 wlkp1.u . . . . . . . 8  |-  ( ph  ->  (iEdg `  S )  =  ( I  u. 
{ <. B ,  E >. } ) )
3528, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26wlkp1lem2 26571 . . . . . . 7  |-  ( ph  ->  ( # `  H
)  =  ( N  +  1 ) )
3635oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( 0..^ ( # `  H ) )  =  ( 0..^ ( N  +  1 ) ) )
37 wlkcl 26511 . . . . . . . 8  |-  ( F (Walks `  G ) P  ->  ( # `  F
)  e.  NN0 )
38 eleq1 2689 . . . . . . . . . . 11  |-  ( (
# `  F )  =  N  ->  ( (
# `  F )  e.  NN0  <->  N  e.  NN0 ) )
3938eqcoms 2630 . . . . . . . . . 10  |-  ( N  =  ( # `  F
)  ->  ( ( # `
 F )  e. 
NN0 
<->  N  e.  NN0 )
)
40 elnn0uz 11725 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
4140biimpi 206 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  0 )
)
4239, 41syl6bi 243 . . . . . . . . 9  |-  ( N  =  ( # `  F
)  ->  ( ( # `
 F )  e. 
NN0  ->  N  e.  (
ZZ>= `  0 ) ) )
435, 42ax-mp 5 . . . . . . . 8  |-  ( (
# `  F )  e.  NN0  ->  N  e.  ( ZZ>= `  0 )
)
441, 37, 433syl 18 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
45 fzosplitsn 12576 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N }
) )
4644, 45syl 17 . . . . . 6  |-  ( ph  ->  ( 0..^ ( N  +  1 ) )  =  ( ( 0..^ N )  u.  { N } ) )
4736, 46eqtrd 2656 . . . . 5  |-  ( ph  ->  ( 0..^ ( # `  H ) )  =  ( ( 0..^ N )  u.  { N } ) )
4834dmeqd 5326 . . . . . 6  |-  ( ph  ->  dom  (iEdg `  S
)  =  dom  (
I  u.  { <. B ,  E >. } ) )
49 dmun 5331 . . . . . 6  |-  dom  (
I  u.  { <. B ,  E >. } )  =  ( dom  I  u.  dom  { <. B ,  E >. } )
5048, 49syl6eq 2672 . . . . 5  |-  ( ph  ->  dom  (iEdg `  S
)  =  ( dom  I  u.  dom  { <. B ,  E >. } ) )
5127, 47, 50feq123d 6034 . . . 4  |-  ( ph  ->  ( H : ( 0..^ ( # `  H
) ) --> dom  (iEdg `  S )  <->  ( F  u.  { <. N ,  B >. } ) : ( ( 0..^ N )  u.  { N }
) --> ( dom  I  u.  dom  { <. B ,  E >. } ) ) )
5225, 51mpbird 247 . . 3  |-  ( ph  ->  H : ( 0..^ ( # `  H
) ) --> dom  (iEdg `  S ) )
53 iswrdb 13311 . . 3  |-  ( H  e. Word  dom  (iEdg `  S
)  <->  H : ( 0..^ ( # `  H
) ) --> dom  (iEdg `  S ) )
5452, 53sylibr 224 . 2  |-  ( ph  ->  H  e. Word  dom  (iEdg `  S ) )
5528wlkp 26512 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> V )
561, 55syl 17 . . . . . 6  |-  ( ph  ->  P : ( 0 ... ( # `  F
) ) --> V )
575oveq2i 6661 . . . . . . 7  |-  ( 0 ... N )  =  ( 0 ... ( # `
 F ) )
5857feq2i 6037 . . . . . 6  |-  ( P : ( 0 ... N ) --> V  <->  P :
( 0 ... ( # `
 F ) ) --> V )
5956, 58sylibr 224 . . . . 5  |-  ( ph  ->  P : ( 0 ... N ) --> V )
60 ovexd 6680 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  _V )
6160, 31fsnd 6179 . . . . 5  |-  ( ph  ->  { <. ( N  + 
1 ) ,  C >. } : { ( N  +  1 ) } --> V )
62 fzp1disj 12399 . . . . . 6  |-  ( ( 0 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
6362a1i 11 . . . . 5  |-  ( ph  ->  ( ( 0 ... N )  i^i  {
( N  +  1 ) } )  =  (/) )
64 fun 6066 . . . . 5  |-  ( ( ( P : ( 0 ... N ) --> V  /\  { <. ( N  +  1 ) ,  C >. } : { ( N  + 
1 ) } --> V )  /\  ( ( 0 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u. 
{ ( N  + 
1 ) } ) --> ( V  u.  V
) )
6559, 61, 63, 64syl21anc 1325 . . . 4  |-  ( ph  ->  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u.  { ( N  +  1 ) } ) --> ( V  u.  V ) )
66 fzsuc 12388 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... ( N  + 
1 ) )  =  ( ( 0 ... N )  u.  {
( N  +  1 ) } ) )
6744, 66syl 17 . . . . 5  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  =  ( ( 0 ... N )  u.  { ( N  +  1 ) } ) )
68 unidm 3756 . . . . . . 7  |-  ( V  u.  V )  =  V
6968eqcomi 2631 . . . . . 6  |-  V  =  ( V  u.  V
)
7069a1i 11 . . . . 5  |-  ( ph  ->  V  =  ( V  u.  V ) )
7167, 70feq23d 6040 . . . 4  |-  ( ph  ->  ( ( P  u.  {
<. ( N  +  1 ) ,  C >. } ) : ( 0 ... ( N  + 
1 ) ) --> V  <-> 
( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( ( 0 ... N )  u.  { ( N  +  1 ) } ) --> ( V  u.  V ) ) )
7265, 71mpbird 247 . . 3  |-  ( ph  ->  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) : ( 0 ... ( N  + 
1 ) ) --> V )
73 wlkp1.q . . . . 5  |-  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } )
7473a1i 11 . . . 4  |-  ( ph  ->  Q  =  ( P  u.  { <. ( N  +  1 ) ,  C >. } ) )
7535oveq2d 6666 . . . 4  |-  ( ph  ->  ( 0 ... ( # `
 H ) )  =  ( 0 ... ( N  +  1 ) ) )
76 wlkp1.s . . . 4  |-  ( ph  ->  (Vtx `  S )  =  V )
7774, 75, 76feq123d 6034 . . 3  |-  ( ph  ->  ( Q : ( 0 ... ( # `  H ) ) --> (Vtx
`  S )  <->  ( P  u.  { <. ( N  + 
1 ) ,  C >. } ) : ( 0 ... ( N  +  1 ) ) --> V ) )
7872, 77mpbird 247 . 2  |-  ( ph  ->  Q : ( 0 ... ( # `  H
) ) --> (Vtx `  S ) )
79 wlkp1.l . . 3  |-  ( (
ph  /\  C  =  ( P `  N ) )  ->  E  =  { C } )
8028, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26, 73, 76, 79wlkp1lem8 26577 . 2  |-  ( ph  ->  A. k  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) )
8128, 2, 29, 30, 14, 31, 32, 1, 5, 17, 33, 34, 26, 73, 76wlkp1lem4 26573 . . 3  |-  ( ph  ->  ( S  e.  _V  /\  H  e.  _V  /\  Q  e.  _V )
)
82 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
83 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
8482, 83iswlk 26506 . . 3  |-  ( ( S  e.  _V  /\  H  e.  _V  /\  Q  e.  _V )  ->  ( H (Walks `  S ) Q 
<->  ( H  e. Word  dom  (iEdg `  S )  /\  Q : ( 0 ... ( # `  H
) ) --> (Vtx `  S )  /\  A. k  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) ) ) )
8581, 84syl 17 . 2  |-  ( ph  ->  ( H (Walks `  S ) Q  <->  ( H  e. Word  dom  (iEdg `  S
)  /\  Q :
( 0 ... ( # `
 H ) ) --> (Vtx `  S )  /\  A. k  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  k )  =  ( Q `  ( k  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  k
) )  =  {
( Q `  k
) } ,  {
( Q `  k
) ,  ( Q `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  k )
) ) ) ) )
8654, 78, 80, 85mpbir3and 1245 1  |-  ( ph  ->  H (Walks `  S
) Q )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495
This theorem is referenced by:  eupthp1  27076
  Copyright terms: Public domain W3C validator