Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wtgoldbnnsum4prm Structured version   Visualization version   GIF version

Theorem wtgoldbnnsum4prm 41690
Description: If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.)
Assertion
Ref Expression
wtgoldbnnsum4prm (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑘,𝑚,𝑑,𝑛

Proof of Theorem wtgoldbnnsum4prm
StepHypRef Expression
1 2z 11409 . . . . . . 7 2 ∈ ℤ
2 9nn 11192 . . . . . . . 8 9 ∈ ℕ
32nnzi 11401 . . . . . . 7 9 ∈ ℤ
4 2re 11090 . . . . . . . 8 2 ∈ ℝ
5 9re 11107 . . . . . . . 8 9 ∈ ℝ
6 2lt9 11228 . . . . . . . 8 2 < 9
74, 5, 6ltleii 10160 . . . . . . 7 2 ≤ 9
8 eluz2 11693 . . . . . . 7 (9 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 9 ∈ ℤ ∧ 2 ≤ 9))
91, 3, 7, 8mpbir3an 1244 . . . . . 6 9 ∈ (ℤ‘2)
10 fzouzsplit 12503 . . . . . . 7 (9 ∈ (ℤ‘2) → (ℤ‘2) = ((2..^9) ∪ (ℤ‘9)))
1110eleq2d 2687 . . . . . 6 (9 ∈ (ℤ‘2) → (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9))))
129, 11ax-mp 5 . . . . 5 (𝑛 ∈ (ℤ‘2) ↔ 𝑛 ∈ ((2..^9) ∪ (ℤ‘9)))
13 elun 3753 . . . . 5 (𝑛 ∈ ((2..^9) ∪ (ℤ‘9)) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
1412, 13bitri 264 . . . 4 (𝑛 ∈ (ℤ‘2) ↔ (𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)))
15 elfzo2 12473 . . . . . . . 8 (𝑛 ∈ (2..^9) ↔ (𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9))
16 simp1 1061 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ∈ (ℤ‘2))
17 df-9 11086 . . . . . . . . . . . 12 9 = (8 + 1)
1817breq2i 4661 . . . . . . . . . . 11 (𝑛 < 9 ↔ 𝑛 < (8 + 1))
19 eluz2nn 11726 . . . . . . . . . . . . . . 15 (𝑛 ∈ (ℤ‘2) → 𝑛 ∈ ℕ)
20 8nn 11191 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2119, 20jctir 561 . . . . . . . . . . . . . 14 (𝑛 ∈ (ℤ‘2) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
2221adantr 481 . . . . . . . . . . . . 13 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ∈ ℕ ∧ 8 ∈ ℕ))
23 nnleltp1 11432 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ ∧ 8 ∈ ℕ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2422, 23syl 17 . . . . . . . . . . . 12 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 ≤ 8 ↔ 𝑛 < (8 + 1)))
2524biimprd 238 . . . . . . . . . . 11 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < (8 + 1) → 𝑛 ≤ 8))
2618, 25syl5bi 232 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ) → (𝑛 < 9 → 𝑛 ≤ 8))
27263impia 1261 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → 𝑛 ≤ 8)
2816, 27jca 554 . . . . . . . 8 ((𝑛 ∈ (ℤ‘2) ∧ 9 ∈ ℤ ∧ 𝑛 < 9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
2915, 28sylbi 207 . . . . . . 7 (𝑛 ∈ (2..^9) → (𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8))
30 nnsum4primesle9 41683 . . . . . . 7 ((𝑛 ∈ (ℤ‘2) ∧ 𝑛 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3129, 30syl 17 . . . . . 6 (𝑛 ∈ (2..^9) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
3231a1d 25 . . . . 5 (𝑛 ∈ (2..^9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
33 4nn 11187 . . . . . . . . 9 4 ∈ ℕ
3433a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ∈ ℕ)
35 oveq2 6658 . . . . . . . . . . 11 (𝑑 = 4 → (1...𝑑) = (1...4))
3635oveq2d 6666 . . . . . . . . . 10 (𝑑 = 4 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 (1...4)))
37 breq1 4656 . . . . . . . . . . 11 (𝑑 = 4 → (𝑑 ≤ 4 ↔ 4 ≤ 4))
3835sumeq1d 14431 . . . . . . . . . . . 12 (𝑑 = 4 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...4)(𝑓𝑘))
3938eqeq2d 2632 . . . . . . . . . . 11 (𝑑 = 4 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4037, 39anbi12d 747 . . . . . . . . . 10 (𝑑 = 4 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4136, 40rexeqbidv 3153 . . . . . . . . 9 (𝑑 = 4 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
4241adantl 482 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 4) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))))
43 4re 11097 . . . . . . . . . . 11 4 ∈ ℝ
4443leidi 10562 . . . . . . . . . 10 4 ≤ 4
4544a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 4 ≤ 4)
46 nnsum4primeseven 41688 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4746impcom 446 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘))
48 r19.42v 3092 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)) ↔ (4 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
4945, 47, 48sylanbrc 698 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...4))(4 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...4)(𝑓𝑘)))
5034, 42, 49rspcedvd 3317 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
5150ex 450 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Even ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
52 3nn 11186 . . . . . . . . 9 3 ∈ ℕ
5352a1i 11 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ∈ ℕ)
54 oveq2 6658 . . . . . . . . . . 11 (𝑑 = 3 → (1...𝑑) = (1...3))
5554oveq2d 6666 . . . . . . . . . 10 (𝑑 = 3 → (ℙ ↑𝑚 (1...𝑑)) = (ℙ ↑𝑚 (1...3)))
56 breq1 4656 . . . . . . . . . . 11 (𝑑 = 3 → (𝑑 ≤ 4 ↔ 3 ≤ 4))
5754sumeq1d 14431 . . . . . . . . . . . 12 (𝑑 = 3 → Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
5857eqeq2d 2632 . . . . . . . . . . 11 (𝑑 = 3 → (𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘) ↔ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
5956, 58anbi12d 747 . . . . . . . . . 10 (𝑑 = 3 → ((𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6055, 59rexeqbidv 3153 . . . . . . . . 9 (𝑑 = 3 → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
6160adantl 482 . . . . . . . 8 ((((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) ∧ 𝑑 = 3) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))))
62 3re 11094 . . . . . . . . . . 11 3 ∈ ℝ
63 3lt4 11197 . . . . . . . . . . 11 3 < 4
6462, 43, 63ltleii 10160 . . . . . . . . . 10 3 ≤ 4
6564a1i 11 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → 3 ≤ 4)
66 6nn 11189 . . . . . . . . . . . . 13 6 ∈ ℕ
6766nnzi 11401 . . . . . . . . . . . 12 6 ∈ ℤ
68 6re 11101 . . . . . . . . . . . . 13 6 ∈ ℝ
69 6lt9 11224 . . . . . . . . . . . . 13 6 < 9
7068, 5, 69ltleii 10160 . . . . . . . . . . . 12 6 ≤ 9
71 eluzuzle 11696 . . . . . . . . . . . 12 ((6 ∈ ℤ ∧ 6 ≤ 9) → (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6)))
7267, 70, 71mp2an 708 . . . . . . . . . . 11 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ (ℤ‘6))
7372anim1i 592 . . . . . . . . . 10 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ))
74 nnsum4primesodd 41684 . . . . . . . . . 10 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ((𝑛 ∈ (ℤ‘6) ∧ 𝑛 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7573, 74mpan9 486 . . . . . . . . 9 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
76 r19.42v 3092 . . . . . . . . 9 (∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)) ↔ (3 ≤ 4 ∧ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7765, 75, 76sylanbrc 698 . . . . . . . 8 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))(3 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
7853, 61, 77rspcedvd 3317 . . . . . . 7 (((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) ∧ ∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW )) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
7978ex 450 . . . . . 6 ((𝑛 ∈ (ℤ‘9) ∧ 𝑛 ∈ Odd ) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
80 eluzelz 11697 . . . . . . 7 (𝑛 ∈ (ℤ‘9) → 𝑛 ∈ ℤ)
81 zeoALTV 41581 . . . . . . 7 (𝑛 ∈ ℤ → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8280, 81syl 17 . . . . . 6 (𝑛 ∈ (ℤ‘9) → (𝑛 ∈ Even ∨ 𝑛 ∈ Odd ))
8351, 79, 82mpjaodan 827 . . . . 5 (𝑛 ∈ (ℤ‘9) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8432, 83jaoi 394 . . . 4 ((𝑛 ∈ (2..^9) ∨ 𝑛 ∈ (ℤ‘9)) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8514, 84sylbi 207 . . 3 (𝑛 ∈ (ℤ‘2) → (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘))))
8685impcom 446 . 2 ((∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) ∧ 𝑛 ∈ (ℤ‘2)) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
8786ralrimiva 2966 1 (∀𝑚 ∈ Odd (5 < 𝑚𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑𝑚 (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cun 3572   class class class wbr 4653  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cn 11020  2c2 11070  3c3 11071  4c4 11072  5c5 11073  6c6 11074  8c8 11076  9c9 11077  cz 11377  cuz 11687  ...cfz 12326  ..^cfzo 12465  Σcsu 14416  cprime 15385   Even ceven 41537   Odd codd 41538   GoldbachOddW cgbow 41634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbe 41636  df-gbow 41637
This theorem is referenced by:  stgoldbnnsum4prm  41691
  Copyright terms: Public domain W3C validator