Proof of Theorem wtgoldbnnsum4prm
Step | Hyp | Ref
| Expression |
1 | | 2z 11409 |
. . . . . . 7
 |
2 | | 9nn 11192 |
. . . . . . . 8
 |
3 | 2 | nnzi 11401 |
. . . . . . 7
 |
4 | | 2re 11090 |
. . . . . . . 8
 |
5 | | 9re 11107 |
. . . . . . . 8
 |
6 | | 2lt9 11228 |
. . . . . . . 8
 |
7 | 4, 5, 6 | ltleii 10160 |
. . . . . . 7
 |
8 | | eluz2 11693 |
. . . . . . 7
         |
9 | 1, 3, 7, 8 | mpbir3an 1244 |
. . . . . 6
     |
10 | | fzouzsplit 12503 |
. . . . . . 7
    
      ..^        |
11 | 10 | eleq2d 2687 |
. . . . . 6
    
       ..^         |
12 | 9, 11 | ax-mp 5 |
. . . . 5
    
  ..^        |
13 | | elun 3753 |
. . . . 5
   ..^        ..^        |
14 | 12, 13 | bitri 264 |
. . . 4
       ..^        |
15 | | elfzo2 12473 |
. . . . . . . 8
  ..^     
   |
16 | | simp1 1061 |
. . . . . . . . 9
             |
17 | | df-9 11086 |
. . . . . . . . . . . 12
   |
18 | 17 | breq2i 4661 |
. . . . . . . . . . 11

    |
19 | | eluz2nn 11726 |
. . . . . . . . . . . . . . 15
    
  |
20 | | 8nn 11191 |
. . . . . . . . . . . . . . 15
 |
21 | 19, 20 | jctir 561 |
. . . . . . . . . . . . . 14
    
    |
22 | 21 | adantr 481 |
. . . . . . . . . . . . 13
       
   |
23 | | nnleltp1 11432 |
. . . . . . . . . . . . 13
 
       |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . 12
       
     |
25 | 24 | biimprd 238 |
. . . . . . . . . . 11
       
     |
26 | 18, 25 | syl5bi 232 |
. . . . . . . . . 10
       
   |
27 | 26 | 3impia 1261 |
. . . . . . . . 9
         |
28 | 16, 27 | jca 554 |
. . . . . . . 8
               |
29 | 15, 28 | sylbi 207 |
. . . . . . 7
  ..^
    
   |
30 | | nnsum4primesle9 41683 |
. . . . . . 7
         
      

            |
31 | 29, 30 | syl 17 |
. . . . . 6
  ..^
  
      

            |
32 | 31 | a1d 25 |
. . . . 5
  ..^
 
Odd 
GoldbachOddW                         |
33 | | 4nn 11187 |
. . . . . . . . 9
 |
34 | 33 | a1i 11 |
. . . . . . . 8
      
Even 
Odd 
GoldbachOddW 
  |
35 | | oveq2 6658 |
. . . . . . . . . . 11
           |
36 | 35 | oveq2d 6666 |
. . . . . . . . . 10
       
       |
37 | | breq1 4656 |
. . . . . . . . . . 11
 
   |
38 | 35 | sumeq1d 14431 |
. . . . . . . . . . . 12
           
           |
39 | 38 | eqeq2d 2632 |
. . . . . . . . . . 11
           
             |
40 | 37, 39 | anbi12d 747 |
. . . . . . . . . 10
  

          
              |
41 | 36, 40 | rexeqbidv 3153 |
. . . . . . . . 9
  
       
          
 
      

             |
42 | 41 | adantl 482 |
. . . . . . . 8
       
Even  Odd  GoldbachOddW     
      

           
      

             |
43 | | 4re 11097 |
. . . . . . . . . . 11
 |
44 | 43 | leidi 10562 |
. . . . . . . . . 10
 |
45 | 44 | a1i 11 |
. . . . . . . . 9
      
Even 
Odd 
GoldbachOddW 
  |
46 | | nnsum4primeseven 41688 |
. . . . . . . . . 10
 
Odd 
GoldbachOddW      
Even  
                   |
47 | 46 | impcom 446 |
. . . . . . . . 9
      
Even 
Odd 
GoldbachOddW 
 
                  |
48 | | r19.42v 3092 |
. . . . . . . . 9
                    
 
                    |
49 | 45, 47, 48 | sylanbrc 698 |
. . . . . . . 8
      
Even 
Odd 
GoldbachOddW 
 
      

            |
50 | 34, 42, 49 | rspcedvd 3317 |
. . . . . . 7
      
Even 
Odd 
GoldbachOddW 
  
      

            |
51 | 50 | ex 450 |
. . . . . 6
      Even
 
Odd 
GoldbachOddW                         |
52 | | 3nn 11186 |
. . . . . . . . 9
 |
53 | 52 | a1i 11 |
. . . . . . . 8
      
Odd 
Odd 
GoldbachOddW 
  |
54 | | oveq2 6658 |
. . . . . . . . . . 11
           |
55 | 54 | oveq2d 6666 |
. . . . . . . . . 10
       
       |
56 | | breq1 4656 |
. . . . . . . . . . 11
 
   |
57 | 54 | sumeq1d 14431 |
. . . . . . . . . . . 12
           
           |
58 | 57 | eqeq2d 2632 |
. . . . . . . . . . 11
           
             |
59 | 56, 58 | anbi12d 747 |
. . . . . . . . . 10
  

          
              |
60 | 55, 59 | rexeqbidv 3153 |
. . . . . . . . 9
  
       
          
 
      

             |
61 | 60 | adantl 482 |
. . . . . . . 8
       
Odd  Odd  GoldbachOddW     
      

           
      

             |
62 | | 3re 11094 |
. . . . . . . . . . 11
 |
63 | | 3lt4 11197 |
. . . . . . . . . . 11
 |
64 | 62, 43, 63 | ltleii 10160 |
. . . . . . . . . 10
 |
65 | 64 | a1i 11 |
. . . . . . . . 9
      
Odd 
Odd 
GoldbachOddW 
  |
66 | | 6nn 11189 |
. . . . . . . . . . . . 13
 |
67 | 66 | nnzi 11401 |
. . . . . . . . . . . 12
 |
68 | | 6re 11101 |
. . . . . . . . . . . . 13
 |
69 | | 6lt9 11224 |
. . . . . . . . . . . . 13
 |
70 | 68, 5, 69 | ltleii 10160 |
. . . . . . . . . . . 12
 |
71 | | eluzuzle 11696 |
. . . . . . . . . . . 12
       
       |
72 | 67, 70, 71 | mp2an 708 |
. . . . . . . . . . 11
    
      |
73 | 72 | anim1i 592 |
. . . . . . . . . 10
      Odd
    
Odd   |
74 | | nnsum4primesodd 41684 |
. . . . . . . . . 10
 
Odd 
GoldbachOddW      
Odd  
                   |
75 | 73, 74 | mpan9 486 |
. . . . . . . . 9
      
Odd 
Odd 
GoldbachOddW 
 
                  |
76 | | r19.42v 3092 |
. . . . . . . . 9
                    
 
                    |
77 | 65, 75, 76 | sylanbrc 698 |
. . . . . . . 8
      
Odd 
Odd 
GoldbachOddW 
 
      

            |
78 | 53, 61, 77 | rspcedvd 3317 |
. . . . . . 7
      
Odd 
Odd 
GoldbachOddW 
  
      

            |
79 | 78 | ex 450 |
. . . . . 6
      Odd
 
Odd 
GoldbachOddW                         |
80 | | eluzelz 11697 |
. . . . . . 7
    
  |
81 | | zeoALTV 41581 |
. . . . . . 7
  Even
Odd   |
82 | 80, 81 | syl 17 |
. . . . . 6
    
 Even Odd   |
83 | 51, 79, 82 | mpjaodan 827 |
. . . . 5
    
 
Odd 
GoldbachOddW                         |
84 | 32, 83 | jaoi 394 |
. . . 4
   ..^     
 
Odd 
GoldbachOddW                         |
85 | 14, 84 | sylbi 207 |
. . 3
    
 
Odd 
GoldbachOddW                         |
86 | 85 | impcom 446 |
. 2
   Odd 
GoldbachOddW     
  
      

            |
87 | 86 | ralrimiva 2966 |
1
 
Odd 
GoldbachOddW        
                     |