MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem2 Structured version   Visualization version   GIF version

Theorem wwlksnextproplem2 26805
Description: Lemma 2 for wwlksnextprop 26807. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextprop.x 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
wwlksnextprop.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextproplem2 ((𝑊𝑋𝑁 ∈ ℕ0) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)

Proof of Theorem wwlksnextproplem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
2 wwlksnextprop.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2wwlknp 26734 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
4 fzonn0p1 12544 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
54adantl 482 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ (0..^(𝑁 + 1)))
6 fveq2 6191 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊𝑖) = (𝑊𝑁))
7 oveq1 6657 . . . . . . . . . . . . . 14 (𝑖 = 𝑁 → (𝑖 + 1) = (𝑁 + 1))
87fveq2d 6195 . . . . . . . . . . . . 13 (𝑖 = 𝑁 → (𝑊‘(𝑖 + 1)) = (𝑊‘(𝑁 + 1)))
96, 8preq12d 4276 . . . . . . . . . . . 12 (𝑖 = 𝑁 → {(𝑊𝑖), (𝑊‘(𝑖 + 1))} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
109eleq1d 2686 . . . . . . . . . . 11 (𝑖 = 𝑁 → ({(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
1110rspcv 3305 . . . . . . . . . 10 (𝑁 ∈ (0..^(𝑁 + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
125, 11syl 17 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
1312imp 445 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸)
14 simpll 790 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 𝑊 ∈ Word (Vtx‘𝐺))
15 1zzd 11408 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℤ)
16 lencl 13324 . . . . . . . . . . . . . . . . . 18 (𝑊 ∈ Word (Vtx‘𝐺) → (#‘𝑊) ∈ ℕ0)
1716nn0zd 11480 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → (#‘𝑊) ∈ ℤ)
1817ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (#‘𝑊) ∈ ℤ)
19 peano2nn0 11333 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2019nn0zd 11480 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
2120adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℤ)
2215, 18, 213jca 1242 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ∈ ℤ ∧ (#‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ))
23 nn0ge0 11318 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
24 1red 10055 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
25 nn0re 11301 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
2624, 25addge02d 10616 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ 1 ≤ (𝑁 + 1)))
2723, 26mpbid 222 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → 1 ≤ (𝑁 + 1))
2827adantl 482 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑁 + 1))
2919nn0red 11352 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
3029lep1d 10955 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ ((𝑁 + 1) + 1))
31 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((𝑁 + 1) ≤ (#‘𝑊) ↔ (𝑁 + 1) ≤ ((𝑁 + 1) + 1)))
3230, 31syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (#‘𝑊)))
3332a1i 11 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑊) ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 + 1) ≤ (#‘𝑊))))
3433com23 86 . . . . . . . . . . . . . . . . . 18 ((#‘𝑊) ∈ ℕ0 → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (#‘𝑊))))
3516, 34syl 17 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ Word (Vtx‘𝐺) → ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑁 ∈ ℕ0 → (𝑁 + 1) ≤ (#‘𝑊))))
3635imp31 448 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (#‘𝑊))
3728, 36jca 554 . . . . . . . . . . . . . . 15 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (#‘𝑊)))
38 elfz2 12333 . . . . . . . . . . . . . . 15 ((𝑁 + 1) ∈ (1...(#‘𝑊)) ↔ ((1 ∈ ℤ ∧ (#‘𝑊) ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) ∧ (1 ≤ (𝑁 + 1) ∧ (𝑁 + 1) ≤ (#‘𝑊))))
3922, 37, 38sylanbrc 698 . . . . . . . . . . . . . 14 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ (1...(#‘𝑊)))
4014, 39jca 554 . . . . . . . . . . . . 13 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(#‘𝑊))))
41 swrd0fvlsw 13443 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (𝑁 + 1) ∈ (1...(#‘𝑊))) → ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑊‘((𝑁 + 1) − 1)))
4240, 41syl 17 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑊‘((𝑁 + 1) − 1)))
43 nn0cn 11302 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
44 1cnd 10056 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
4543, 44pncand 10393 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4645fveq2d 6195 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4746adantl 482 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((𝑁 + 1) − 1)) = (𝑊𝑁))
4842, 47eqtrd 2656 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)) = (𝑊𝑁))
49 lsw 13351 . . . . . . . . . . . . 13 (𝑊 ∈ Word (Vtx‘𝐺) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
5049ad2antrr 762 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ( lastS ‘𝑊) = (𝑊‘((#‘𝑊) − 1)))
51 oveq1 6657 . . . . . . . . . . . . . . 15 ((#‘𝑊) = ((𝑁 + 1) + 1) → ((#‘𝑊) − 1) = (((𝑁 + 1) + 1) − 1))
5251fveq2d 6195 . . . . . . . . . . . . . 14 ((#‘𝑊) = ((𝑁 + 1) + 1) → (𝑊‘((#‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
5352adantl 482 . . . . . . . . . . . . 13 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊‘((#‘𝑊) − 1)) = (𝑊‘(((𝑁 + 1) + 1) − 1)))
5419nn0cnd 11353 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
5554, 44pncand 10393 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (((𝑁 + 1) + 1) − 1) = (𝑁 + 1))
5655fveq2d 6195 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊‘(((𝑁 + 1) + 1) − 1)) = (𝑊‘(𝑁 + 1)))
5753, 56sylan9eq 2676 . . . . . . . . . . . 12 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → (𝑊‘((#‘𝑊) − 1)) = (𝑊‘(𝑁 + 1)))
5850, 57eqtrd 2656 . . . . . . . . . . 11 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ( lastS ‘𝑊) = (𝑊‘(𝑁 + 1)))
5948, 58preq12d 4276 . . . . . . . . . 10 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} = {(𝑊𝑁), (𝑊‘(𝑁 + 1))})
6059eleq1d 2686 . . . . . . . . 9 (((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) → ({( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6160adantr 481 . . . . . . . 8 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → ({( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸 ↔ {(𝑊𝑁), (𝑊‘(𝑁 + 1))} ∈ 𝐸))
6213, 61mpbird 247 . . . . . . 7 ((((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) ∧ 𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)
6362exp31 630 . . . . . 6 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (𝑁 ∈ ℕ0 → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)))
6463com23 86 . . . . 5 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1)) → (∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 → (𝑁 ∈ ℕ0 → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)))
65643impia 1261 . . . 4 ((𝑊 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑁 ∈ ℕ0 → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸))
663, 65syl 17 . . 3 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑁 ∈ ℕ0 → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸))
67 wwlksnextprop.x . . 3 𝑋 = ((𝑁 + 1) WWalksN 𝐺)
6866, 67eleq2s 2719 . 2 (𝑊𝑋 → (𝑁 ∈ ℕ0 → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸))
6968imp 445 1 ((𝑊𝑋𝑁 ∈ ℕ0) → {( lastS ‘(𝑊 substr ⟨0, (𝑁 + 1)⟩)), ( lastS ‘𝑊)} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {cpr 4179  cop 4183   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cle 10075  cmin 10266  0cn0 11292  cz 11377  ...cfz 12326  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wwlksnextprop  26807
  Copyright terms: Public domain W3C validator