MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextproplem2 Structured version   Visualization version   Unicode version

Theorem wwlksnextproplem2 26805
Description: Lemma 2 for wwlksnextprop 26807. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 20-Apr-2021.)
Hypotheses
Ref Expression
wwlksnextprop.x  |-  X  =  ( ( N  + 
1 ) WWalksN  G )
wwlksnextprop.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
wwlksnextproplem2  |-  ( ( W  e.  X  /\  N  e.  NN0 )  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  +  1 ) >.
) ) ,  ( lastS  `  W ) }  e.  E )

Proof of Theorem wwlksnextproplem2
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 wwlksnextprop.e . . . . 5  |-  E  =  (Edg `  G )
31, 2wwlknp 26734 . . . 4  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( W  e. Word  (Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E ) )
4 fzonn0p1 12544 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  N  e.  ( 0..^ ( N  +  1 ) ) )
54adantl 482 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  N  e.  ( 0..^ ( N  +  1 ) ) )
6 fveq2 6191 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  ( W `  i )  =  ( W `  N ) )
7 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( i  =  N  ->  (
i  +  1 )  =  ( N  + 
1 ) )
87fveq2d 6195 . . . . . . . . . . . . 13  |-  ( i  =  N  ->  ( W `  ( i  +  1 ) )  =  ( W `  ( N  +  1
) ) )
96, 8preq12d 4276 . . . . . . . . . . . 12  |-  ( i  =  N  ->  { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  =  { ( W `  N ) ,  ( W `  ( N  +  1 ) ) } )
109eleq1d 2686 . . . . . . . . . . 11  |-  ( i  =  N  ->  ( { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E  <->  { ( W `  N ) ,  ( W `  ( N  +  1
) ) }  e.  E ) )
1110rspcv 3305 . . . . . . . . . 10  |-  ( N  e.  ( 0..^ ( N  +  1 ) )  ->  ( A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E  ->  { ( W `
 N ) ,  ( W `  ( N  +  1 ) ) }  e.  E
) )
125, 11syl 17 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( A. i  e.  (
0..^ ( N  + 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  E  ->  { ( W `  N ) ,  ( W `  ( N  +  1
) ) }  e.  E ) )
1312imp 445 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 ) )  /\  N  e.  NN0 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  { ( W `
 N ) ,  ( W `  ( N  +  1 ) ) }  e.  E
)
14 simpll 790 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  W  e. Word  (Vtx `  G )
)
15 1zzd 11408 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  1  e.  ZZ )
16 lencl 13324 . . . . . . . . . . . . . . . . . 18  |-  ( W  e. Word  (Vtx `  G
)  ->  ( # `  W
)  e.  NN0 )
1716nn0zd 11480 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  (Vtx `  G
)  ->  ( # `  W
)  e.  ZZ )
1817ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( # `
 W )  e.  ZZ )
19 peano2nn0 11333 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2019nn0zd 11480 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
2120adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  ZZ )
2215, 18, 213jca 1242 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  (
1  e.  ZZ  /\  ( # `  W )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ ) )
23 nn0ge0 11318 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  0  <_  N )
24 1red 10055 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  1  e.  RR )
25 nn0re 11301 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  N  e.  RR )
2624, 25addge02d 10616 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN0  ->  ( 0  <_  N  <->  1  <_  ( N  +  1 ) ) )
2723, 26mpbid 222 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN0  ->  1  <_ 
( N  +  1 ) )
2827adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  1  <_  ( N  +  1 ) )
2919nn0red 11352 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  RR )
3029lep1d 10955 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  NN0  ->  ( N  +  1 )  <_ 
( ( N  + 
1 )  +  1 ) )
31 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
( N  +  1 )  <_  ( # `  W
)  <->  ( N  + 
1 )  <_  (
( N  +  1 )  +  1 ) ) )
3230, 31syl5ibrcom 237 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  NN0  ->  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  ( N  +  1 )  <_  ( # `  W
) ) )
3332a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  W )  e.  NN0  ->  ( N  e.  NN0  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  +  1 )  <_ 
( # `  W ) ) ) )
3433com23 86 . . . . . . . . . . . . . . . . . 18  |-  ( (
# `  W )  e.  NN0  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  <_ 
( # `  W ) ) ) )
3516, 34syl 17 . . . . . . . . . . . . . . . . 17  |-  ( W  e. Word  (Vtx `  G
)  ->  ( ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  ->  ( N  e.  NN0  ->  ( N  +  1 )  <_ 
( # `  W ) ) ) )
3635imp31 448 . . . . . . . . . . . . . . . 16  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( N  +  1 )  <_  ( # `  W
) )
3728, 36jca 554 . . . . . . . . . . . . . . 15  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  (
1  <_  ( N  +  1 )  /\  ( N  +  1
)  <_  ( # `  W
) ) )
38 elfz2 12333 . . . . . . . . . . . . . . 15  |-  ( ( N  +  1 )  e.  ( 1 ... ( # `  W
) )  <->  ( (
1  e.  ZZ  /\  ( # `  W )  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  /\  ( 1  <_  ( N  +  1 )  /\  ( N  + 
1 )  <_  ( # `
 W ) ) ) )
3922, 37, 38sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) )
4014, 39jca 554 . . . . . . . . . . . . 13  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W  e. Word  (Vtx `  G
)  /\  ( N  +  1 )  e.  ( 1 ... ( # `
 W ) ) ) )
41 swrd0fvlsw 13443 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( N  +  1 )  e.  ( 1 ... ( # `  W
) ) )  -> 
( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( W `
 ( ( N  +  1 )  - 
1 ) ) )
4240, 41syl 17 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( W `
 ( ( N  +  1 )  - 
1 ) ) )
43 nn0cn 11302 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
44 1cnd 10056 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  1  e.  CC )
4543, 44pncand 10393 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4645fveq2d 6195 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( W `
 ( ( N  +  1 )  - 
1 ) )  =  ( W `  N
) )
4746adantl 482 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W `  ( ( N  +  1 )  -  1 ) )  =  ( W `  N ) )
4842, 47eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
)  =  ( W `
 N ) )
49 lsw 13351 . . . . . . . . . . . . 13  |-  ( W  e. Word  (Vtx `  G
)  ->  ( lastS  `  W
)  =  ( W `
 ( ( # `  W )  -  1 ) ) )
5049ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( lastS  `  W )  =  ( W `  ( (
# `  W )  -  1 ) ) )
51 oveq1 6657 . . . . . . . . . . . . . . 15  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  (
( # `  W )  -  1 )  =  ( ( ( N  +  1 )  +  1 )  -  1 ) )
5251fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( (
# `  W )  =  ( ( N  +  1 )  +  1 )  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  (
( ( N  + 
1 )  +  1 )  -  1 ) ) )
5352adantl 482 . . . . . . . . . . . . 13  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  (
( ( N  + 
1 )  +  1 )  -  1 ) ) )
5419nn0cnd 11353 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  CC )
5554, 44pncand 10393 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( ( N  +  1 )  +  1 )  -  1 )  =  ( N  +  1 ) )
5655fveq2d 6195 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( W `
 ( ( ( N  +  1 )  +  1 )  - 
1 ) )  =  ( W `  ( N  +  1 ) ) )
5753, 56sylan9eq 2676 . . . . . . . . . . . 12  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( W `  ( ( # `
 W )  - 
1 ) )  =  ( W `  ( N  +  1 ) ) )
5850, 57eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( lastS  `  W )  =  ( W `  ( N  +  1 ) ) )
5948, 58preq12d 4276 . . . . . . . . . 10  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  =  {
( W `  N
) ,  ( W `
 ( N  + 
1 ) ) } )
6059eleq1d 2686 . . . . . . . . 9  |-  ( ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  /\  N  e.  NN0 )  ->  ( { ( lastS  `  ( W substr  <. 0 ,  ( N  +  1 ) >.
) ) ,  ( lastS  `  W ) }  e.  E 
<->  { ( W `  N ) ,  ( W `  ( N  +  1 ) ) }  e.  E ) )
6160adantr 481 . . . . . . . 8  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 ) )  /\  N  e.  NN0 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  ( { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  e.  E  <->  { ( W `  N
) ,  ( W `
 ( N  + 
1 ) ) }  e.  E ) )
6213, 61mpbird 247 . . . . . . 7  |-  ( ( ( ( W  e. Word 
(Vtx `  G )  /\  ( # `  W
)  =  ( ( N  +  1 )  +  1 ) )  /\  N  e.  NN0 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  +  1 )
>. ) ) ,  ( lastS  `  W ) }  e.  E )
6362exp31 630 . . . . . 6  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( N  e.  NN0  ->  ( A. i  e.  (
0..^ ( N  + 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  E  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  e.  E
) ) )
6463com23 86 . . . . 5  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 ) )  ->  ( A. i  e.  (
0..^ ( N  + 
1 ) ) { ( W `  i
) ,  ( W `
 ( i  +  1 ) ) }  e.  E  ->  ( N  e.  NN0  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  e.  E
) ) )
65643impia 1261 . . . 4  |-  ( ( W  e. Word  (Vtx `  G )  /\  ( # `
 W )  =  ( ( N  + 
1 )  +  1 )  /\  A. i  e.  ( 0..^ ( N  +  1 ) ) { ( W `  i ) ,  ( W `  ( i  +  1 ) ) }  e.  E )  ->  ( N  e. 
NN0  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  +  1 )
>. ) ) ,  ( lastS  `  W ) }  e.  E ) )
663, 65syl 17 . . 3  |-  ( W  e.  ( ( N  +  1 ) WWalksN  G
)  ->  ( N  e.  NN0  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  e.  E
) )
67 wwlksnextprop.x . . 3  |-  X  =  ( ( N  + 
1 ) WWalksN  G )
6866, 67eleq2s 2719 . 2  |-  ( W  e.  X  ->  ( N  e.  NN0  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  + 
1 ) >. )
) ,  ( lastS  `  W
) }  e.  E
) )
6968imp 445 1  |-  ( ( W  e.  X  /\  N  e.  NN0 )  ->  { ( lastS  `  ( W substr  <. 0 ,  ( N  +  1 ) >.
) ) ,  ( lastS  `  W ) }  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939    <_ cle 10075    - cmin 10266   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   substr csubstr 13295  Vtxcvtx 25874  Edgcedg 25939   WWalksN cwwlksn 26718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-substr 13303  df-wwlks 26722  df-wwlksn 26723
This theorem is referenced by:  wwlksnextprop  26807
  Copyright terms: Public domain W3C validator