Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
igb_main.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  e1000-devel Mailing List <[email protected]>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include "igb.h"
61 
62 #define MAJ 4
63 #define MIN 0
64 #define BUILD 1
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
69 static const char igb_driver_string[] =
70  "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] = "Copyright (c) 2007-2012 Intel Corporation.";
72 
73 static const struct e1000_info *igb_info_tbl[] = {
75 };
76 
77 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
108  /* required last entry */
109  {0, }
110 };
111 
112 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
113 
114 void igb_reset(struct igb_adapter *);
115 static int igb_setup_all_tx_resources(struct igb_adapter *);
116 static int igb_setup_all_rx_resources(struct igb_adapter *);
117 static void igb_free_all_tx_resources(struct igb_adapter *);
118 static void igb_free_all_rx_resources(struct igb_adapter *);
119 static void igb_setup_mrqc(struct igb_adapter *);
120 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
121 static void __devexit igb_remove(struct pci_dev *pdev);
122 static int igb_sw_init(struct igb_adapter *);
123 static int igb_open(struct net_device *);
124 static int igb_close(struct net_device *);
125 static void igb_configure_tx(struct igb_adapter *);
126 static void igb_configure_rx(struct igb_adapter *);
127 static void igb_clean_all_tx_rings(struct igb_adapter *);
128 static void igb_clean_all_rx_rings(struct igb_adapter *);
129 static void igb_clean_tx_ring(struct igb_ring *);
130 static void igb_clean_rx_ring(struct igb_ring *);
131 static void igb_set_rx_mode(struct net_device *);
132 static void igb_update_phy_info(unsigned long);
133 static void igb_watchdog(unsigned long);
134 static void igb_watchdog_task(struct work_struct *);
135 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
136 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
137  struct rtnl_link_stats64 *stats);
138 static int igb_change_mtu(struct net_device *, int);
139 static int igb_set_mac(struct net_device *, void *);
140 static void igb_set_uta(struct igb_adapter *adapter);
141 static irqreturn_t igb_intr(int irq, void *);
142 static irqreturn_t igb_intr_msi(int irq, void *);
143 static irqreturn_t igb_msix_other(int irq, void *);
144 static irqreturn_t igb_msix_ring(int irq, void *);
145 #ifdef CONFIG_IGB_DCA
146 static void igb_update_dca(struct igb_q_vector *);
147 static void igb_setup_dca(struct igb_adapter *);
148 #endif /* CONFIG_IGB_DCA */
149 static int igb_poll(struct napi_struct *, int);
150 static bool igb_clean_tx_irq(struct igb_q_vector *);
151 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
152 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
153 static void igb_tx_timeout(struct net_device *);
154 static void igb_reset_task(struct work_struct *);
155 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
156 static int igb_vlan_rx_add_vid(struct net_device *, u16);
157 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
158 static void igb_restore_vlan(struct igb_adapter *);
159 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
160 static void igb_ping_all_vfs(struct igb_adapter *);
161 static void igb_msg_task(struct igb_adapter *);
162 static void igb_vmm_control(struct igb_adapter *);
163 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
164 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
165 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
166 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
167  int vf, u16 vlan, u8 qos);
168 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
169 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
170  struct ifla_vf_info *ivi);
171 static void igb_check_vf_rate_limit(struct igb_adapter *);
172 
173 #ifdef CONFIG_PCI_IOV
174 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
175 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
176 #endif
177 
178 #ifdef CONFIG_PM
179 #ifdef CONFIG_PM_SLEEP
180 static int igb_suspend(struct device *);
181 #endif
182 static int igb_resume(struct device *);
183 #ifdef CONFIG_PM_RUNTIME
184 static int igb_runtime_suspend(struct device *dev);
185 static int igb_runtime_resume(struct device *dev);
186 static int igb_runtime_idle(struct device *dev);
187 #endif
188 static const struct dev_pm_ops igb_pm_ops = {
189  SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
190  SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
191  igb_runtime_idle)
192 };
193 #endif
194 static void igb_shutdown(struct pci_dev *);
195 #ifdef CONFIG_IGB_DCA
196 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197 static struct notifier_block dca_notifier = {
198  .notifier_call = igb_notify_dca,
199  .next = NULL,
200  .priority = 0
201 };
202 #endif
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 /* for netdump / net console */
205 static void igb_netpoll(struct net_device *);
206 #endif
207 #ifdef CONFIG_PCI_IOV
208 static unsigned int max_vfs = 0;
209 module_param(max_vfs, uint, 0);
210 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
211  "per physical function");
212 #endif /* CONFIG_PCI_IOV */
213 
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218 
219 static const struct pci_error_handlers igb_err_handler = {
220  .error_detected = igb_io_error_detected,
221  .slot_reset = igb_io_slot_reset,
222  .resume = igb_io_resume,
223 };
224 
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226 
227 static struct pci_driver igb_driver = {
228  .name = igb_driver_name,
229  .id_table = igb_pci_tbl,
230  .probe = igb_probe,
231  .remove = __devexit_p(igb_remove),
232 #ifdef CONFIG_PM
233  .driver.pm = &igb_pm_ops,
234 #endif
235  .shutdown = igb_shutdown,
236  .err_handler = &igb_err_handler
237 };
238 
239 MODULE_AUTHOR("Intel Corporation, <[email protected]>");
240 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
241 MODULE_LICENSE("GPL");
243 
244 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
245 static int debug = -1;
246 module_param(debug, int, 0);
247 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
248 
249 struct igb_reg_info {
251  char *name;
252 };
253 
254 static const struct igb_reg_info igb_reg_info_tbl[] = {
255 
256  /* General Registers */
257  {E1000_CTRL, "CTRL"},
258  {E1000_STATUS, "STATUS"},
259  {E1000_CTRL_EXT, "CTRL_EXT"},
260 
261  /* Interrupt Registers */
262  {E1000_ICR, "ICR"},
263 
264  /* RX Registers */
265  {E1000_RCTL, "RCTL"},
266  {E1000_RDLEN(0), "RDLEN"},
267  {E1000_RDH(0), "RDH"},
268  {E1000_RDT(0), "RDT"},
269  {E1000_RXDCTL(0), "RXDCTL"},
270  {E1000_RDBAL(0), "RDBAL"},
271  {E1000_RDBAH(0), "RDBAH"},
272 
273  /* TX Registers */
274  {E1000_TCTL, "TCTL"},
275  {E1000_TDBAL(0), "TDBAL"},
276  {E1000_TDBAH(0), "TDBAH"},
277  {E1000_TDLEN(0), "TDLEN"},
278  {E1000_TDH(0), "TDH"},
279  {E1000_TDT(0), "TDT"},
280  {E1000_TXDCTL(0), "TXDCTL"},
281  {E1000_TDFH, "TDFH"},
282  {E1000_TDFT, "TDFT"},
283  {E1000_TDFHS, "TDFHS"},
284  {E1000_TDFPC, "TDFPC"},
285 
286  /* List Terminator */
287  {}
288 };
289 
290 /*
291  * igb_regdump - register printout routine
292  */
293 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
294 {
295  int n = 0;
296  char rname[16];
297  u32 regs[8];
298 
299  switch (reginfo->ofs) {
300  case E1000_RDLEN(0):
301  for (n = 0; n < 4; n++)
302  regs[n] = rd32(E1000_RDLEN(n));
303  break;
304  case E1000_RDH(0):
305  for (n = 0; n < 4; n++)
306  regs[n] = rd32(E1000_RDH(n));
307  break;
308  case E1000_RDT(0):
309  for (n = 0; n < 4; n++)
310  regs[n] = rd32(E1000_RDT(n));
311  break;
312  case E1000_RXDCTL(0):
313  for (n = 0; n < 4; n++)
314  regs[n] = rd32(E1000_RXDCTL(n));
315  break;
316  case E1000_RDBAL(0):
317  for (n = 0; n < 4; n++)
318  regs[n] = rd32(E1000_RDBAL(n));
319  break;
320  case E1000_RDBAH(0):
321  for (n = 0; n < 4; n++)
322  regs[n] = rd32(E1000_RDBAH(n));
323  break;
324  case E1000_TDBAL(0):
325  for (n = 0; n < 4; n++)
326  regs[n] = rd32(E1000_RDBAL(n));
327  break;
328  case E1000_TDBAH(0):
329  for (n = 0; n < 4; n++)
330  regs[n] = rd32(E1000_TDBAH(n));
331  break;
332  case E1000_TDLEN(0):
333  for (n = 0; n < 4; n++)
334  regs[n] = rd32(E1000_TDLEN(n));
335  break;
336  case E1000_TDH(0):
337  for (n = 0; n < 4; n++)
338  regs[n] = rd32(E1000_TDH(n));
339  break;
340  case E1000_TDT(0):
341  for (n = 0; n < 4; n++)
342  regs[n] = rd32(E1000_TDT(n));
343  break;
344  case E1000_TXDCTL(0):
345  for (n = 0; n < 4; n++)
346  regs[n] = rd32(E1000_TXDCTL(n));
347  break;
348  default:
349  pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
350  return;
351  }
352 
353  snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
354  pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
355  regs[2], regs[3]);
356 }
357 
358 /*
359  * igb_dump - Print registers, tx-rings and rx-rings
360  */
361 static void igb_dump(struct igb_adapter *adapter)
362 {
363  struct net_device *netdev = adapter->netdev;
364  struct e1000_hw *hw = &adapter->hw;
365  struct igb_reg_info *reginfo;
366  struct igb_ring *tx_ring;
367  union e1000_adv_tx_desc *tx_desc;
368  struct my_u0 { u64 a; u64 b; } *u0;
369  struct igb_ring *rx_ring;
370  union e1000_adv_rx_desc *rx_desc;
371  u32 staterr;
372  u16 i, n;
373 
374  if (!netif_msg_hw(adapter))
375  return;
376 
377  /* Print netdevice Info */
378  if (netdev) {
379  dev_info(&adapter->pdev->dev, "Net device Info\n");
380  pr_info("Device Name state trans_start "
381  "last_rx\n");
382  pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383  netdev->state, netdev->trans_start, netdev->last_rx);
384  }
385 
386  /* Print Registers */
387  dev_info(&adapter->pdev->dev, "Register Dump\n");
388  pr_info(" Register Name Value\n");
389  for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390  reginfo->name; reginfo++) {
391  igb_regdump(hw, reginfo);
392  }
393 
394  /* Print TX Ring Summary */
395  if (!netdev || !netif_running(netdev))
396  goto exit;
397 
398  dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399  pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400  for (n = 0; n < adapter->num_tx_queues; n++) {
401  struct igb_tx_buffer *buffer_info;
402  tx_ring = adapter->tx_ring[n];
403  buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404  pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405  n, tx_ring->next_to_use, tx_ring->next_to_clean,
406  (u64)dma_unmap_addr(buffer_info, dma),
407  dma_unmap_len(buffer_info, len),
408  buffer_info->next_to_watch,
409  (u64)buffer_info->time_stamp);
410  }
411 
412  /* Print TX Rings */
413  if (!netif_msg_tx_done(adapter))
414  goto rx_ring_summary;
415 
416  dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417 
418  /* Transmit Descriptor Formats
419  *
420  * Advanced Transmit Descriptor
421  * +--------------------------------------------------------------+
422  * 0 | Buffer Address [63:0] |
423  * +--------------------------------------------------------------+
424  * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425  * +--------------------------------------------------------------+
426  * 63 46 45 40 39 38 36 35 32 31 24 15 0
427  */
428 
429  for (n = 0; n < adapter->num_tx_queues; n++) {
430  tx_ring = adapter->tx_ring[n];
431  pr_info("------------------------------------\n");
432  pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433  pr_info("------------------------------------\n");
434  pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
435  "[bi->dma ] leng ntw timestamp "
436  "bi->skb\n");
437 
438  for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439  const char *next_desc;
440  struct igb_tx_buffer *buffer_info;
441  tx_desc = IGB_TX_DESC(tx_ring, i);
442  buffer_info = &tx_ring->tx_buffer_info[i];
443  u0 = (struct my_u0 *)tx_desc;
444  if (i == tx_ring->next_to_use &&
445  i == tx_ring->next_to_clean)
446  next_desc = " NTC/U";
447  else if (i == tx_ring->next_to_use)
448  next_desc = " NTU";
449  else if (i == tx_ring->next_to_clean)
450  next_desc = " NTC";
451  else
452  next_desc = "";
453 
454  pr_info("T [0x%03X] %016llX %016llX %016llX"
455  " %04X %p %016llX %p%s\n", i,
456  le64_to_cpu(u0->a),
457  le64_to_cpu(u0->b),
458  (u64)dma_unmap_addr(buffer_info, dma),
459  dma_unmap_len(buffer_info, len),
460  buffer_info->next_to_watch,
461  (u64)buffer_info->time_stamp,
462  buffer_info->skb, next_desc);
463 
464  if (netif_msg_pktdata(adapter) && buffer_info->skb)
465  print_hex_dump(KERN_INFO, "",
467  16, 1, buffer_info->skb->data,
468  dma_unmap_len(buffer_info, len),
469  true);
470  }
471  }
472 
473  /* Print RX Rings Summary */
474 rx_ring_summary:
475  dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
476  pr_info("Queue [NTU] [NTC]\n");
477  for (n = 0; n < adapter->num_rx_queues; n++) {
478  rx_ring = adapter->rx_ring[n];
479  pr_info(" %5d %5X %5X\n",
480  n, rx_ring->next_to_use, rx_ring->next_to_clean);
481  }
482 
483  /* Print RX Rings */
484  if (!netif_msg_rx_status(adapter))
485  goto exit;
486 
487  dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
488 
489  /* Advanced Receive Descriptor (Read) Format
490  * 63 1 0
491  * +-----------------------------------------------------+
492  * 0 | Packet Buffer Address [63:1] |A0/NSE|
493  * +----------------------------------------------+------+
494  * 8 | Header Buffer Address [63:1] | DD |
495  * +-----------------------------------------------------+
496  *
497  *
498  * Advanced Receive Descriptor (Write-Back) Format
499  *
500  * 63 48 47 32 31 30 21 20 17 16 4 3 0
501  * +------------------------------------------------------+
502  * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
503  * | Checksum Ident | | | | Type | Type |
504  * +------------------------------------------------------+
505  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
506  * +------------------------------------------------------+
507  * 63 48 47 32 31 20 19 0
508  */
509 
510  for (n = 0; n < adapter->num_rx_queues; n++) {
511  rx_ring = adapter->rx_ring[n];
512  pr_info("------------------------------------\n");
513  pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
514  pr_info("------------------------------------\n");
515  pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
516  "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
517  pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
518  "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
519 
520  for (i = 0; i < rx_ring->count; i++) {
521  const char *next_desc;
522  struct igb_rx_buffer *buffer_info;
523  buffer_info = &rx_ring->rx_buffer_info[i];
524  rx_desc = IGB_RX_DESC(rx_ring, i);
525  u0 = (struct my_u0 *)rx_desc;
526  staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
527 
528  if (i == rx_ring->next_to_use)
529  next_desc = " NTU";
530  else if (i == rx_ring->next_to_clean)
531  next_desc = " NTC";
532  else
533  next_desc = "";
534 
535  if (staterr & E1000_RXD_STAT_DD) {
536  /* Descriptor Done */
537  pr_info("%s[0x%03X] %016llX %016llX -------"
538  "--------- %p%s\n", "RWB", i,
539  le64_to_cpu(u0->a),
540  le64_to_cpu(u0->b),
541  buffer_info->skb, next_desc);
542  } else {
543  pr_info("%s[0x%03X] %016llX %016llX %016llX"
544  " %p%s\n", "R ", i,
545  le64_to_cpu(u0->a),
546  le64_to_cpu(u0->b),
547  (u64)buffer_info->dma,
548  buffer_info->skb, next_desc);
549 
550  if (netif_msg_pktdata(adapter) &&
551  buffer_info->dma && buffer_info->skb) {
552  print_hex_dump(KERN_INFO, "",
554  16, 1, buffer_info->skb->data,
555  IGB_RX_HDR_LEN, true);
556  print_hex_dump(KERN_INFO, "",
558  16, 1,
559  page_address(buffer_info->page) +
560  buffer_info->page_offset,
561  PAGE_SIZE/2, true);
562  }
563  }
564  }
565  }
566 
567 exit:
568  return;
569 }
570 
575 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
576 {
577  struct igb_adapter *adapter = hw->back;
578  return adapter->netdev;
579 }
580 
587 static int __init igb_init_module(void)
588 {
589  int ret;
590  pr_info("%s - version %s\n",
591  igb_driver_string, igb_driver_version);
592 
593  pr_info("%s\n", igb_copyright);
594 
595 #ifdef CONFIG_IGB_DCA
596  dca_register_notify(&dca_notifier);
597 #endif
598  ret = pci_register_driver(&igb_driver);
599  return ret;
600 }
601 
602 module_init(igb_init_module);
603 
610 static void __exit igb_exit_module(void)
611 {
612 #ifdef CONFIG_IGB_DCA
613  dca_unregister_notify(&dca_notifier);
614 #endif
615  pci_unregister_driver(&igb_driver);
616 }
617 
618 module_exit(igb_exit_module);
619 
620 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
621 
628 static void igb_cache_ring_register(struct igb_adapter *adapter)
629 {
630  int i = 0, j = 0;
631  u32 rbase_offset = adapter->vfs_allocated_count;
632 
633  switch (adapter->hw.mac.type) {
634  case e1000_82576:
635  /* The queues are allocated for virtualization such that VF 0
636  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
637  * In order to avoid collision we start at the first free queue
638  * and continue consuming queues in the same sequence
639  */
640  if (adapter->vfs_allocated_count) {
641  for (; i < adapter->rss_queues; i++)
642  adapter->rx_ring[i]->reg_idx = rbase_offset +
643  Q_IDX_82576(i);
644  }
645  case e1000_82575:
646  case e1000_82580:
647  case e1000_i350:
648  case e1000_i210:
649  case e1000_i211:
650  default:
651  for (; i < adapter->num_rx_queues; i++)
652  adapter->rx_ring[i]->reg_idx = rbase_offset + i;
653  for (; j < adapter->num_tx_queues; j++)
654  adapter->tx_ring[j]->reg_idx = rbase_offset + j;
655  break;
656  }
657 }
658 
659 static void igb_free_queues(struct igb_adapter *adapter)
660 {
661  int i;
662 
663  for (i = 0; i < adapter->num_tx_queues; i++) {
664  kfree(adapter->tx_ring[i]);
665  adapter->tx_ring[i] = NULL;
666  }
667  for (i = 0; i < adapter->num_rx_queues; i++) {
668  kfree(adapter->rx_ring[i]);
669  adapter->rx_ring[i] = NULL;
670  }
671  adapter->num_rx_queues = 0;
672  adapter->num_tx_queues = 0;
673 }
674 
682 static int igb_alloc_queues(struct igb_adapter *adapter)
683 {
684  struct igb_ring *ring;
685  int i;
686 
687  for (i = 0; i < adapter->num_tx_queues; i++) {
688  ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
689  if (!ring)
690  goto err;
691  ring->count = adapter->tx_ring_count;
692  ring->queue_index = i;
693  ring->dev = &adapter->pdev->dev;
694  ring->netdev = adapter->netdev;
695  /* For 82575, context index must be unique per ring. */
696  if (adapter->hw.mac.type == e1000_82575)
698  adapter->tx_ring[i] = ring;
699  }
700 
701  for (i = 0; i < adapter->num_rx_queues; i++) {
702  ring = kzalloc(sizeof(struct igb_ring), GFP_KERNEL);
703  if (!ring)
704  goto err;
705  ring->count = adapter->rx_ring_count;
706  ring->queue_index = i;
707  ring->dev = &adapter->pdev->dev;
708  ring->netdev = adapter->netdev;
709  /* set flag indicating ring supports SCTP checksum offload */
710  if (adapter->hw.mac.type >= e1000_82576)
712 
713  /*
714  * On i350, i210, and i211, loopback VLAN packets
715  * have the tag byte-swapped.
716  * */
717  if (adapter->hw.mac.type >= e1000_i350)
719 
720  adapter->rx_ring[i] = ring;
721  }
722 
723  igb_cache_ring_register(adapter);
724 
725  return 0;
726 
727 err:
728  igb_free_queues(adapter);
729 
730  return -ENOMEM;
731 }
732 
745 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
746  int index, int offset)
747 {
748  u32 ivar = array_rd32(E1000_IVAR0, index);
749 
750  /* clear any bits that are currently set */
751  ivar &= ~((u32)0xFF << offset);
752 
753  /* write vector and valid bit */
754  ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
755 
756  array_wr32(E1000_IVAR0, index, ivar);
757 }
758 
759 #define IGB_N0_QUEUE -1
760 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
761 {
762  struct igb_adapter *adapter = q_vector->adapter;
763  struct e1000_hw *hw = &adapter->hw;
764  int rx_queue = IGB_N0_QUEUE;
765  int tx_queue = IGB_N0_QUEUE;
766  u32 msixbm = 0;
767 
768  if (q_vector->rx.ring)
769  rx_queue = q_vector->rx.ring->reg_idx;
770  if (q_vector->tx.ring)
771  tx_queue = q_vector->tx.ring->reg_idx;
772 
773  switch (hw->mac.type) {
774  case e1000_82575:
775  /* The 82575 assigns vectors using a bitmask, which matches the
776  bitmask for the EICR/EIMS/EIMC registers. To assign one
777  or more queues to a vector, we write the appropriate bits
778  into the MSIXBM register for that vector. */
779  if (rx_queue > IGB_N0_QUEUE)
780  msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
781  if (tx_queue > IGB_N0_QUEUE)
782  msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
783  if (!adapter->msix_entries && msix_vector == 0)
784  msixbm |= E1000_EIMS_OTHER;
785  array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
786  q_vector->eims_value = msixbm;
787  break;
788  case e1000_82576:
789  /*
790  * 82576 uses a table that essentially consists of 2 columns
791  * with 8 rows. The ordering is column-major so we use the
792  * lower 3 bits as the row index, and the 4th bit as the
793  * column offset.
794  */
795  if (rx_queue > IGB_N0_QUEUE)
796  igb_write_ivar(hw, msix_vector,
797  rx_queue & 0x7,
798  (rx_queue & 0x8) << 1);
799  if (tx_queue > IGB_N0_QUEUE)
800  igb_write_ivar(hw, msix_vector,
801  tx_queue & 0x7,
802  ((tx_queue & 0x8) << 1) + 8);
803  q_vector->eims_value = 1 << msix_vector;
804  break;
805  case e1000_82580:
806  case e1000_i350:
807  case e1000_i210:
808  case e1000_i211:
809  /*
810  * On 82580 and newer adapters the scheme is similar to 82576
811  * however instead of ordering column-major we have things
812  * ordered row-major. So we traverse the table by using
813  * bit 0 as the column offset, and the remaining bits as the
814  * row index.
815  */
816  if (rx_queue > IGB_N0_QUEUE)
817  igb_write_ivar(hw, msix_vector,
818  rx_queue >> 1,
819  (rx_queue & 0x1) << 4);
820  if (tx_queue > IGB_N0_QUEUE)
821  igb_write_ivar(hw, msix_vector,
822  tx_queue >> 1,
823  ((tx_queue & 0x1) << 4) + 8);
824  q_vector->eims_value = 1 << msix_vector;
825  break;
826  default:
827  BUG();
828  break;
829  }
830 
831  /* add q_vector eims value to global eims_enable_mask */
832  adapter->eims_enable_mask |= q_vector->eims_value;
833 
834  /* configure q_vector to set itr on first interrupt */
835  q_vector->set_itr = 1;
836 }
837 
844 static void igb_configure_msix(struct igb_adapter *adapter)
845 {
846  u32 tmp;
847  int i, vector = 0;
848  struct e1000_hw *hw = &adapter->hw;
849 
850  adapter->eims_enable_mask = 0;
851 
852  /* set vector for other causes, i.e. link changes */
853  switch (hw->mac.type) {
854  case e1000_82575:
855  tmp = rd32(E1000_CTRL_EXT);
856  /* enable MSI-X PBA support*/
857  tmp |= E1000_CTRL_EXT_PBA_CLR;
858 
859  /* Auto-Mask interrupts upon ICR read. */
860  tmp |= E1000_CTRL_EXT_EIAME;
861  tmp |= E1000_CTRL_EXT_IRCA;
862 
863  wr32(E1000_CTRL_EXT, tmp);
864 
865  /* enable msix_other interrupt */
866  array_wr32(E1000_MSIXBM(0), vector++,
868  adapter->eims_other = E1000_EIMS_OTHER;
869 
870  break;
871 
872  case e1000_82576:
873  case e1000_82580:
874  case e1000_i350:
875  case e1000_i210:
876  case e1000_i211:
877  /* Turn on MSI-X capability first, or our settings
878  * won't stick. And it will take days to debug. */
882 
883  /* enable msix_other interrupt */
884  adapter->eims_other = 1 << vector;
885  tmp = (vector++ | E1000_IVAR_VALID) << 8;
886 
887  wr32(E1000_IVAR_MISC, tmp);
888  break;
889  default:
890  /* do nothing, since nothing else supports MSI-X */
891  break;
892  } /* switch (hw->mac.type) */
893 
894  adapter->eims_enable_mask |= adapter->eims_other;
895 
896  for (i = 0; i < adapter->num_q_vectors; i++)
897  igb_assign_vector(adapter->q_vector[i], vector++);
898 
899  wrfl();
900 }
901 
908 static int igb_request_msix(struct igb_adapter *adapter)
909 {
910  struct net_device *netdev = adapter->netdev;
911  struct e1000_hw *hw = &adapter->hw;
912  int i, err = 0, vector = 0;
913 
914  err = request_irq(adapter->msix_entries[vector].vector,
915  igb_msix_other, 0, netdev->name, adapter);
916  if (err)
917  goto out;
918  vector++;
919 
920  for (i = 0; i < adapter->num_q_vectors; i++) {
921  struct igb_q_vector *q_vector = adapter->q_vector[i];
922 
923  q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
924 
925  if (q_vector->rx.ring && q_vector->tx.ring)
926  sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
927  q_vector->rx.ring->queue_index);
928  else if (q_vector->tx.ring)
929  sprintf(q_vector->name, "%s-tx-%u", netdev->name,
930  q_vector->tx.ring->queue_index);
931  else if (q_vector->rx.ring)
932  sprintf(q_vector->name, "%s-rx-%u", netdev->name,
933  q_vector->rx.ring->queue_index);
934  else
935  sprintf(q_vector->name, "%s-unused", netdev->name);
936 
937  err = request_irq(adapter->msix_entries[vector].vector,
938  igb_msix_ring, 0, q_vector->name,
939  q_vector);
940  if (err)
941  goto out;
942  vector++;
943  }
944 
945  igb_configure_msix(adapter);
946  return 0;
947 out:
948  return err;
949 }
950 
951 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
952 {
953  if (adapter->msix_entries) {
954  pci_disable_msix(adapter->pdev);
955  kfree(adapter->msix_entries);
956  adapter->msix_entries = NULL;
957  } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
958  pci_disable_msi(adapter->pdev);
959  }
960 }
961 
970 static void igb_free_q_vectors(struct igb_adapter *adapter)
971 {
972  int v_idx;
973 
974  for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
975  struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
976  adapter->q_vector[v_idx] = NULL;
977  if (!q_vector)
978  continue;
979  netif_napi_del(&q_vector->napi);
980  kfree(q_vector);
981  }
982  adapter->num_q_vectors = 0;
983 }
984 
991 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
992 {
993  igb_free_queues(adapter);
994  igb_free_q_vectors(adapter);
995  igb_reset_interrupt_capability(adapter);
996 }
997 
1004 static int igb_set_interrupt_capability(struct igb_adapter *adapter)
1005 {
1006  int err;
1007  int numvecs, i;
1008 
1009  /* Number of supported queues. */
1010  adapter->num_rx_queues = adapter->rss_queues;
1011  if (adapter->vfs_allocated_count)
1012  adapter->num_tx_queues = 1;
1013  else
1014  adapter->num_tx_queues = adapter->rss_queues;
1015 
1016  /* start with one vector for every rx queue */
1017  numvecs = adapter->num_rx_queues;
1018 
1019  /* if tx handler is separate add 1 for every tx queue */
1020  if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1021  numvecs += adapter->num_tx_queues;
1022 
1023  /* store the number of vectors reserved for queues */
1024  adapter->num_q_vectors = numvecs;
1025 
1026  /* add 1 vector for link status interrupts */
1027  numvecs++;
1028  adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1029  GFP_KERNEL);
1030 
1031  if (!adapter->msix_entries)
1032  goto msi_only;
1033 
1034  for (i = 0; i < numvecs; i++)
1035  adapter->msix_entries[i].entry = i;
1036 
1037  err = pci_enable_msix(adapter->pdev,
1038  adapter->msix_entries,
1039  numvecs);
1040  if (err == 0)
1041  goto out;
1042 
1043  igb_reset_interrupt_capability(adapter);
1044 
1045  /* If we can't do MSI-X, try MSI */
1046 msi_only:
1047 #ifdef CONFIG_PCI_IOV
1048  /* disable SR-IOV for non MSI-X configurations */
1049  if (adapter->vf_data) {
1050  struct e1000_hw *hw = &adapter->hw;
1051  /* disable iov and allow time for transactions to clear */
1052  pci_disable_sriov(adapter->pdev);
1053  msleep(500);
1054 
1055  kfree(adapter->vf_data);
1056  adapter->vf_data = NULL;
1058  wrfl();
1059  msleep(100);
1060  dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1061  }
1062 #endif
1063  adapter->vfs_allocated_count = 0;
1064  adapter->rss_queues = 1;
1065  adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1066  adapter->num_rx_queues = 1;
1067  adapter->num_tx_queues = 1;
1068  adapter->num_q_vectors = 1;
1069  if (!pci_enable_msi(adapter->pdev))
1070  adapter->flags |= IGB_FLAG_HAS_MSI;
1071 out:
1072  /* Notify the stack of the (possibly) reduced queue counts. */
1073  rtnl_lock();
1075  err = netif_set_real_num_rx_queues(adapter->netdev,
1076  adapter->num_rx_queues);
1077  rtnl_unlock();
1078  return err;
1079 }
1080 
1088 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1089 {
1090  struct igb_q_vector *q_vector;
1091  struct e1000_hw *hw = &adapter->hw;
1092  int v_idx;
1093 
1094  for (v_idx = 0; v_idx < adapter->num_q_vectors; v_idx++) {
1095  q_vector = kzalloc(sizeof(struct igb_q_vector),
1096  GFP_KERNEL);
1097  if (!q_vector)
1098  goto err_out;
1099  q_vector->adapter = adapter;
1100  q_vector->itr_register = hw->hw_addr + E1000_EITR(0);
1101  q_vector->itr_val = IGB_START_ITR;
1102  netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll, 64);
1103  adapter->q_vector[v_idx] = q_vector;
1104  }
1105 
1106  return 0;
1107 
1108 err_out:
1109  igb_free_q_vectors(adapter);
1110  return -ENOMEM;
1111 }
1112 
1113 static void igb_map_rx_ring_to_vector(struct igb_adapter *adapter,
1114  int ring_idx, int v_idx)
1115 {
1116  struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1117 
1118  q_vector->rx.ring = adapter->rx_ring[ring_idx];
1119  q_vector->rx.ring->q_vector = q_vector;
1120  q_vector->rx.count++;
1121  q_vector->itr_val = adapter->rx_itr_setting;
1122  if (q_vector->itr_val && q_vector->itr_val <= 3)
1123  q_vector->itr_val = IGB_START_ITR;
1124 }
1125 
1126 static void igb_map_tx_ring_to_vector(struct igb_adapter *adapter,
1127  int ring_idx, int v_idx)
1128 {
1129  struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1130 
1131  q_vector->tx.ring = adapter->tx_ring[ring_idx];
1132  q_vector->tx.ring->q_vector = q_vector;
1133  q_vector->tx.count++;
1134  q_vector->itr_val = adapter->tx_itr_setting;
1135  q_vector->tx.work_limit = adapter->tx_work_limit;
1136  if (q_vector->itr_val && q_vector->itr_val <= 3)
1137  q_vector->itr_val = IGB_START_ITR;
1138 }
1139 
1145 static int igb_map_ring_to_vector(struct igb_adapter *adapter)
1146 {
1147  int i;
1148  int v_idx = 0;
1149 
1150  if ((adapter->num_q_vectors < adapter->num_rx_queues) ||
1151  (adapter->num_q_vectors < adapter->num_tx_queues))
1152  return -ENOMEM;
1153 
1154  if (adapter->num_q_vectors >=
1155  (adapter->num_rx_queues + adapter->num_tx_queues)) {
1156  for (i = 0; i < adapter->num_rx_queues; i++)
1157  igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1158  for (i = 0; i < adapter->num_tx_queues; i++)
1159  igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1160  } else {
1161  for (i = 0; i < adapter->num_rx_queues; i++) {
1162  if (i < adapter->num_tx_queues)
1163  igb_map_tx_ring_to_vector(adapter, i, v_idx);
1164  igb_map_rx_ring_to_vector(adapter, i, v_idx++);
1165  }
1166  for (; i < adapter->num_tx_queues; i++)
1167  igb_map_tx_ring_to_vector(adapter, i, v_idx++);
1168  }
1169  return 0;
1170 }
1171 
1177 static int igb_init_interrupt_scheme(struct igb_adapter *adapter)
1178 {
1179  struct pci_dev *pdev = adapter->pdev;
1180  int err;
1181 
1182  err = igb_set_interrupt_capability(adapter);
1183  if (err)
1184  return err;
1185 
1186  err = igb_alloc_q_vectors(adapter);
1187  if (err) {
1188  dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1189  goto err_alloc_q_vectors;
1190  }
1191 
1192  err = igb_alloc_queues(adapter);
1193  if (err) {
1194  dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
1195  goto err_alloc_queues;
1196  }
1197 
1198  err = igb_map_ring_to_vector(adapter);
1199  if (err) {
1200  dev_err(&pdev->dev, "Invalid q_vector to ring mapping\n");
1201  goto err_map_queues;
1202  }
1203 
1204 
1205  return 0;
1206 err_map_queues:
1207  igb_free_queues(adapter);
1208 err_alloc_queues:
1209  igb_free_q_vectors(adapter);
1210 err_alloc_q_vectors:
1211  igb_reset_interrupt_capability(adapter);
1212  return err;
1213 }
1214 
1221 static int igb_request_irq(struct igb_adapter *adapter)
1222 {
1223  struct net_device *netdev = adapter->netdev;
1224  struct pci_dev *pdev = adapter->pdev;
1225  int err = 0;
1226 
1227  if (adapter->msix_entries) {
1228  err = igb_request_msix(adapter);
1229  if (!err)
1230  goto request_done;
1231  /* fall back to MSI */
1232  igb_clear_interrupt_scheme(adapter);
1233  if (!pci_enable_msi(pdev))
1234  adapter->flags |= IGB_FLAG_HAS_MSI;
1235  igb_free_all_tx_resources(adapter);
1236  igb_free_all_rx_resources(adapter);
1237  adapter->num_tx_queues = 1;
1238  adapter->num_rx_queues = 1;
1239  adapter->num_q_vectors = 1;
1240  err = igb_alloc_q_vectors(adapter);
1241  if (err) {
1242  dev_err(&pdev->dev,
1243  "Unable to allocate memory for vectors\n");
1244  goto request_done;
1245  }
1246  err = igb_alloc_queues(adapter);
1247  if (err) {
1248  dev_err(&pdev->dev,
1249  "Unable to allocate memory for queues\n");
1250  igb_free_q_vectors(adapter);
1251  goto request_done;
1252  }
1253  igb_setup_all_tx_resources(adapter);
1254  igb_setup_all_rx_resources(adapter);
1255  }
1256 
1257  igb_assign_vector(adapter->q_vector[0], 0);
1258 
1259  if (adapter->flags & IGB_FLAG_HAS_MSI) {
1260  err = request_irq(pdev->irq, igb_intr_msi, 0,
1261  netdev->name, adapter);
1262  if (!err)
1263  goto request_done;
1264 
1265  /* fall back to legacy interrupts */
1266  igb_reset_interrupt_capability(adapter);
1267  adapter->flags &= ~IGB_FLAG_HAS_MSI;
1268  }
1269 
1270  err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1271  netdev->name, adapter);
1272 
1273  if (err)
1274  dev_err(&pdev->dev, "Error %d getting interrupt\n",
1275  err);
1276 
1277 request_done:
1278  return err;
1279 }
1280 
1281 static void igb_free_irq(struct igb_adapter *adapter)
1282 {
1283  if (adapter->msix_entries) {
1284  int vector = 0, i;
1285 
1286  free_irq(adapter->msix_entries[vector++].vector, adapter);
1287 
1288  for (i = 0; i < adapter->num_q_vectors; i++)
1289  free_irq(adapter->msix_entries[vector++].vector,
1290  adapter->q_vector[i]);
1291  } else {
1292  free_irq(adapter->pdev->irq, adapter);
1293  }
1294 }
1295 
1300 static void igb_irq_disable(struct igb_adapter *adapter)
1301 {
1302  struct e1000_hw *hw = &adapter->hw;
1303 
1304  /*
1305  * we need to be careful when disabling interrupts. The VFs are also
1306  * mapped into these registers and so clearing the bits can cause
1307  * issues on the VF drivers so we only need to clear what we set
1308  */
1309  if (adapter->msix_entries) {
1311  wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1312  wr32(E1000_EIMC, adapter->eims_enable_mask);
1313  regval = rd32(E1000_EIAC);
1314  wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1315  }
1316 
1317  wr32(E1000_IAM, 0);
1318  wr32(E1000_IMC, ~0);
1319  wrfl();
1320  if (adapter->msix_entries) {
1321  int i;
1322  for (i = 0; i < adapter->num_q_vectors; i++)
1323  synchronize_irq(adapter->msix_entries[i].vector);
1324  } else {
1325  synchronize_irq(adapter->pdev->irq);
1326  }
1327 }
1328 
1333 static void igb_irq_enable(struct igb_adapter *adapter)
1334 {
1335  struct e1000_hw *hw = &adapter->hw;
1336 
1337  if (adapter->msix_entries) {
1340  wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1341  regval = rd32(E1000_EIAM);
1342  wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1343  wr32(E1000_EIMS, adapter->eims_enable_mask);
1344  if (adapter->vfs_allocated_count) {
1345  wr32(E1000_MBVFIMR, 0xFF);
1346  ims |= E1000_IMS_VMMB;
1347  }
1348  wr32(E1000_IMS, ims);
1349  } else {
1351  E1000_IMS_DRSTA);
1353  E1000_IMS_DRSTA);
1354  }
1355 }
1356 
1357 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1358 {
1359  struct e1000_hw *hw = &adapter->hw;
1360  u16 vid = adapter->hw.mng_cookie.vlan_id;
1361  u16 old_vid = adapter->mng_vlan_id;
1362 
1363  if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1364  /* add VID to filter table */
1365  igb_vfta_set(hw, vid, true);
1366  adapter->mng_vlan_id = vid;
1367  } else {
1368  adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1369  }
1370 
1371  if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1372  (vid != old_vid) &&
1373  !test_bit(old_vid, adapter->active_vlans)) {
1374  /* remove VID from filter table */
1375  igb_vfta_set(hw, old_vid, false);
1376  }
1377 }
1378 
1388 static void igb_release_hw_control(struct igb_adapter *adapter)
1389 {
1390  struct e1000_hw *hw = &adapter->hw;
1391  u32 ctrl_ext;
1392 
1393  /* Let firmware take over control of h/w */
1394  ctrl_ext = rd32(E1000_CTRL_EXT);
1396  ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1397 }
1398 
1408 static void igb_get_hw_control(struct igb_adapter *adapter)
1409 {
1410  struct e1000_hw *hw = &adapter->hw;
1411  u32 ctrl_ext;
1412 
1413  /* Let firmware know the driver has taken over */
1414  ctrl_ext = rd32(E1000_CTRL_EXT);
1416  ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1417 }
1418 
1423 static void igb_configure(struct igb_adapter *adapter)
1424 {
1425  struct net_device *netdev = adapter->netdev;
1426  int i;
1427 
1428  igb_get_hw_control(adapter);
1429  igb_set_rx_mode(netdev);
1430 
1431  igb_restore_vlan(adapter);
1432 
1433  igb_setup_tctl(adapter);
1434  igb_setup_mrqc(adapter);
1435  igb_setup_rctl(adapter);
1436 
1437  igb_configure_tx(adapter);
1438  igb_configure_rx(adapter);
1439 
1440  igb_rx_fifo_flush_82575(&adapter->hw);
1441 
1442  /* call igb_desc_unused which always leaves
1443  * at least 1 descriptor unused to make sure
1444  * next_to_use != next_to_clean */
1445  for (i = 0; i < adapter->num_rx_queues; i++) {
1446  struct igb_ring *ring = adapter->rx_ring[i];
1447  igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1448  }
1449 }
1450 
1455 void igb_power_up_link(struct igb_adapter *adapter)
1456 {
1457  igb_reset_phy(&adapter->hw);
1458 
1459  if (adapter->hw.phy.media_type == e1000_media_type_copper)
1460  igb_power_up_phy_copper(&adapter->hw);
1461  else
1463 }
1464 
1469 static void igb_power_down_link(struct igb_adapter *adapter)
1470 {
1471  if (adapter->hw.phy.media_type == e1000_media_type_copper)
1473  else
1475 }
1476 
1481 int igb_up(struct igb_adapter *adapter)
1482 {
1483  struct e1000_hw *hw = &adapter->hw;
1484  int i;
1485 
1486  /* hardware has been reset, we need to reload some things */
1487  igb_configure(adapter);
1488 
1489  clear_bit(__IGB_DOWN, &adapter->state);
1490 
1491  for (i = 0; i < adapter->num_q_vectors; i++)
1492  napi_enable(&(adapter->q_vector[i]->napi));
1493 
1494  if (adapter->msix_entries)
1495  igb_configure_msix(adapter);
1496  else
1497  igb_assign_vector(adapter->q_vector[0], 0);
1498 
1499  /* Clear any pending interrupts. */
1500  rd32(E1000_ICR);
1501  igb_irq_enable(adapter);
1502 
1503  /* notify VFs that reset has been completed */
1504  if (adapter->vfs_allocated_count) {
1506  reg_data |= E1000_CTRL_EXT_PFRSTD;
1507  wr32(E1000_CTRL_EXT, reg_data);
1508  }
1509 
1510  netif_tx_start_all_queues(adapter->netdev);
1511 
1512  /* start the watchdog. */
1513  hw->mac.get_link_status = 1;
1514  schedule_work(&adapter->watchdog_task);
1515 
1516  return 0;
1517 }
1518 
1519 void igb_down(struct igb_adapter *adapter)
1520 {
1521  struct net_device *netdev = adapter->netdev;
1522  struct e1000_hw *hw = &adapter->hw;
1523  u32 tctl, rctl;
1524  int i;
1525 
1526  /* signal that we're down so the interrupt handler does not
1527  * reschedule our watchdog timer */
1528  set_bit(__IGB_DOWN, &adapter->state);
1529 
1530  /* disable receives in the hardware */
1531  rctl = rd32(E1000_RCTL);
1532  wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1533  /* flush and sleep below */
1534 
1535  netif_tx_stop_all_queues(netdev);
1536 
1537  /* disable transmits in the hardware */
1538  tctl = rd32(E1000_TCTL);
1539  tctl &= ~E1000_TCTL_EN;
1540  wr32(E1000_TCTL, tctl);
1541  /* flush both disables and wait for them to finish */
1542  wrfl();
1543  msleep(10);
1544 
1545  for (i = 0; i < adapter->num_q_vectors; i++)
1546  napi_disable(&(adapter->q_vector[i]->napi));
1547 
1548  igb_irq_disable(adapter);
1549 
1550  del_timer_sync(&adapter->watchdog_timer);
1551  del_timer_sync(&adapter->phy_info_timer);
1552 
1553  netif_carrier_off(netdev);
1554 
1555  /* record the stats before reset*/
1556  spin_lock(&adapter->stats64_lock);
1557  igb_update_stats(adapter, &adapter->stats64);
1558  spin_unlock(&adapter->stats64_lock);
1559 
1560  adapter->link_speed = 0;
1561  adapter->link_duplex = 0;
1562 
1563  if (!pci_channel_offline(adapter->pdev))
1564  igb_reset(adapter);
1565  igb_clean_all_tx_rings(adapter);
1566  igb_clean_all_rx_rings(adapter);
1567 #ifdef CONFIG_IGB_DCA
1568 
1569  /* since we reset the hardware DCA settings were cleared */
1570  igb_setup_dca(adapter);
1571 #endif
1572 }
1573 
1574 void igb_reinit_locked(struct igb_adapter *adapter)
1575 {
1576  WARN_ON(in_interrupt());
1577  while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1578  msleep(1);
1579  igb_down(adapter);
1580  igb_up(adapter);
1581  clear_bit(__IGB_RESETTING, &adapter->state);
1582 }
1583 
1584 void igb_reset(struct igb_adapter *adapter)
1585 {
1586  struct pci_dev *pdev = adapter->pdev;
1587  struct e1000_hw *hw = &adapter->hw;
1588  struct e1000_mac_info *mac = &hw->mac;
1589  struct e1000_fc_info *fc = &hw->fc;
1590  u32 pba = 0, tx_space, min_tx_space, min_rx_space;
1591  u16 hwm;
1592 
1593  /* Repartition Pba for greater than 9k mtu
1594  * To take effect CTRL.RST is required.
1595  */
1596  switch (mac->type) {
1597  case e1000_i350:
1598  case e1000_82580:
1599  pba = rd32(E1000_RXPBS);
1600  pba = igb_rxpbs_adjust_82580(pba);
1601  break;
1602  case e1000_82576:
1603  pba = rd32(E1000_RXPBS);
1605  break;
1606  case e1000_82575:
1607  case e1000_i210:
1608  case e1000_i211:
1609  default:
1610  pba = E1000_PBA_34K;
1611  break;
1612  }
1613 
1614  if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1615  (mac->type < e1000_82576)) {
1616  /* adjust PBA for jumbo frames */
1617  wr32(E1000_PBA, pba);
1618 
1619  /* To maintain wire speed transmits, the Tx FIFO should be
1620  * large enough to accommodate two full transmit packets,
1621  * rounded up to the next 1KB and expressed in KB. Likewise,
1622  * the Rx FIFO should be large enough to accommodate at least
1623  * one full receive packet and is similarly rounded up and
1624  * expressed in KB. */
1625  pba = rd32(E1000_PBA);
1626  /* upper 16 bits has Tx packet buffer allocation size in KB */
1627  tx_space = pba >> 16;
1628  /* lower 16 bits has Rx packet buffer allocation size in KB */
1629  pba &= 0xffff;
1630  /* the tx fifo also stores 16 bytes of information about the tx
1631  * but don't include ethernet FCS because hardware appends it */
1632  min_tx_space = (adapter->max_frame_size +
1633  sizeof(union e1000_adv_tx_desc) -
1634  ETH_FCS_LEN) * 2;
1635  min_tx_space = ALIGN(min_tx_space, 1024);
1636  min_tx_space >>= 10;
1637  /* software strips receive CRC, so leave room for it */
1638  min_rx_space = adapter->max_frame_size;
1639  min_rx_space = ALIGN(min_rx_space, 1024);
1640  min_rx_space >>= 10;
1641 
1642  /* If current Tx allocation is less than the min Tx FIFO size,
1643  * and the min Tx FIFO size is less than the current Rx FIFO
1644  * allocation, take space away from current Rx allocation */
1645  if (tx_space < min_tx_space &&
1646  ((min_tx_space - tx_space) < pba)) {
1647  pba = pba - (min_tx_space - tx_space);
1648 
1649  /* if short on rx space, rx wins and must trump tx
1650  * adjustment */
1651  if (pba < min_rx_space)
1652  pba = min_rx_space;
1653  }
1654  wr32(E1000_PBA, pba);
1655  }
1656 
1657  /* flow control settings */
1658  /* The high water mark must be low enough to fit one full frame
1659  * (or the size used for early receive) above it in the Rx FIFO.
1660  * Set it to the lower of:
1661  * - 90% of the Rx FIFO size, or
1662  * - the full Rx FIFO size minus one full frame */
1663  hwm = min(((pba << 10) * 9 / 10),
1664  ((pba << 10) - 2 * adapter->max_frame_size));
1665 
1666  fc->high_water = hwm & 0xFFF0; /* 16-byte granularity */
1667  fc->low_water = fc->high_water - 16;
1668  fc->pause_time = 0xFFFF;
1669  fc->send_xon = 1;
1670  fc->current_mode = fc->requested_mode;
1671 
1672  /* disable receive for all VFs and wait one second */
1673  if (adapter->vfs_allocated_count) {
1674  int i;
1675  for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1676  adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1677 
1678  /* ping all the active vfs to let them know we are going down */
1679  igb_ping_all_vfs(adapter);
1680 
1681  /* disable transmits and receives */
1682  wr32(E1000_VFRE, 0);
1683  wr32(E1000_VFTE, 0);
1684  }
1685 
1686  /* Allow time for pending master requests to run */
1687  hw->mac.ops.reset_hw(hw);
1688  wr32(E1000_WUC, 0);
1689 
1690  if (hw->mac.ops.init_hw(hw))
1691  dev_err(&pdev->dev, "Hardware Error\n");
1692 
1693  /*
1694  * Flow control settings reset on hardware reset, so guarantee flow
1695  * control is off when forcing speed.
1696  */
1697  if (!hw->mac.autoneg)
1698  igb_force_mac_fc(hw);
1699 
1700  igb_init_dmac(adapter, pba);
1701  if (!netif_running(adapter->netdev))
1702  igb_power_down_link(adapter);
1703 
1704  igb_update_mng_vlan(adapter);
1705 
1706  /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1708 
1709 #ifdef CONFIG_IGB_PTP
1710  /* Re-enable PTP, where applicable. */
1711  igb_ptp_reset(adapter);
1712 #endif /* CONFIG_IGB_PTP */
1713 
1714  igb_get_phy_info(hw);
1715 }
1716 
1717 static netdev_features_t igb_fix_features(struct net_device *netdev,
1719 {
1720  /*
1721  * Since there is no support for separate rx/tx vlan accel
1722  * enable/disable make sure tx flag is always in same state as rx.
1723  */
1724  if (features & NETIF_F_HW_VLAN_RX)
1725  features |= NETIF_F_HW_VLAN_TX;
1726  else
1727  features &= ~NETIF_F_HW_VLAN_TX;
1728 
1729  return features;
1730 }
1731 
1732 static int igb_set_features(struct net_device *netdev,
1733  netdev_features_t features)
1734 {
1736  struct igb_adapter *adapter = netdev_priv(netdev);
1737 
1738  if (changed & NETIF_F_HW_VLAN_RX)
1739  igb_vlan_mode(netdev, features);
1740 
1741  if (!(changed & NETIF_F_RXALL))
1742  return 0;
1743 
1744  netdev->features = features;
1745 
1746  if (netif_running(netdev))
1747  igb_reinit_locked(adapter);
1748  else
1749  igb_reset(adapter);
1750 
1751  return 0;
1752 }
1753 
1754 static const struct net_device_ops igb_netdev_ops = {
1755  .ndo_open = igb_open,
1756  .ndo_stop = igb_close,
1757  .ndo_start_xmit = igb_xmit_frame,
1758  .ndo_get_stats64 = igb_get_stats64,
1759  .ndo_set_rx_mode = igb_set_rx_mode,
1760  .ndo_set_mac_address = igb_set_mac,
1761  .ndo_change_mtu = igb_change_mtu,
1762  .ndo_do_ioctl = igb_ioctl,
1763  .ndo_tx_timeout = igb_tx_timeout,
1764  .ndo_validate_addr = eth_validate_addr,
1765  .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1766  .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1767  .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1768  .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1769  .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1770  .ndo_get_vf_config = igb_ndo_get_vf_config,
1771 #ifdef CONFIG_NET_POLL_CONTROLLER
1772  .ndo_poll_controller = igb_netpoll,
1773 #endif
1774  .ndo_fix_features = igb_fix_features,
1775  .ndo_set_features = igb_set_features,
1776 };
1777 
1783 void igb_set_fw_version(struct igb_adapter *adapter)
1784 {
1785  struct e1000_hw *hw = &adapter->hw;
1786  u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
1787  u16 major, build, patch, fw_version;
1788  u32 etrack_id;
1789 
1790  hw->nvm.ops.read(hw, 5, 1, &fw_version);
1791  if (adapter->hw.mac.type != e1000_i211) {
1792  hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verh);
1793  hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verl);
1794  etrack_id = (eeprom_verh << IGB_ETRACK_SHIFT) | eeprom_verl;
1795 
1796  /* combo image version needs to be found */
1797  hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
1798  if ((comb_offset != 0x0) &&
1799  (comb_offset != IGB_NVM_VER_INVALID)) {
1800  hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
1801  + 1), 1, &comb_verh);
1802  hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
1803  1, &comb_verl);
1804 
1805  /* Only display Option Rom if it exists and is valid */
1806  if ((comb_verh && comb_verl) &&
1807  ((comb_verh != IGB_NVM_VER_INVALID) &&
1808  (comb_verl != IGB_NVM_VER_INVALID))) {
1809  major = comb_verl >> IGB_COMB_VER_SHFT;
1810  build = (comb_verl << IGB_COMB_VER_SHFT) |
1811  (comb_verh >> IGB_COMB_VER_SHFT);
1812  patch = comb_verh & IGB_COMB_VER_MASK;
1813  snprintf(adapter->fw_version,
1814  sizeof(adapter->fw_version),
1815  "%d.%d%d, 0x%08x, %d.%d.%d",
1816  (fw_version & IGB_MAJOR_MASK) >>
1818  (fw_version & IGB_MINOR_MASK) >>
1820  (fw_version & IGB_BUILD_MASK),
1821  etrack_id, major, build, patch);
1822  goto out;
1823  }
1824  }
1825  snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1826  "%d.%d%d, 0x%08x",
1827  (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1828  (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1829  (fw_version & IGB_BUILD_MASK), etrack_id);
1830  } else {
1831  snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1832  "%d.%d%d",
1833  (fw_version & IGB_MAJOR_MASK) >> IGB_MAJOR_SHIFT,
1834  (fw_version & IGB_MINOR_MASK) >> IGB_MINOR_SHIFT,
1835  (fw_version & IGB_BUILD_MASK));
1836  }
1837 out:
1838  return;
1839 }
1840 
1852 static int __devinit igb_probe(struct pci_dev *pdev,
1853  const struct pci_device_id *ent)
1854 {
1855  struct net_device *netdev;
1856  struct igb_adapter *adapter;
1857  struct e1000_hw *hw;
1858  u16 eeprom_data = 0;
1859  s32 ret_val;
1860  static int global_quad_port_a; /* global quad port a indication */
1861  const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
1862  unsigned long mmio_start, mmio_len;
1863  int err, pci_using_dac;
1864  u16 eeprom_apme_mask = IGB_EEPROM_APME;
1865  u8 part_str[E1000_PBANUM_LENGTH];
1866 
1867  /* Catch broken hardware that put the wrong VF device ID in
1868  * the PCIe SR-IOV capability.
1869  */
1870  if (pdev->is_virtfn) {
1871  WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
1872  pci_name(pdev), pdev->vendor, pdev->device);
1873  return -EINVAL;
1874  }
1875 
1876  err = pci_enable_device_mem(pdev);
1877  if (err)
1878  return err;
1879 
1880  pci_using_dac = 0;
1881  err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1882  if (!err) {
1883  err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1884  if (!err)
1885  pci_using_dac = 1;
1886  } else {
1887  err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1888  if (err) {
1889  err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1890  if (err) {
1891  dev_err(&pdev->dev, "No usable DMA "
1892  "configuration, aborting\n");
1893  goto err_dma;
1894  }
1895  }
1896  }
1897 
1899  IORESOURCE_MEM),
1900  igb_driver_name);
1901  if (err)
1902  goto err_pci_reg;
1903 
1905 
1906  pci_set_master(pdev);
1907  pci_save_state(pdev);
1908 
1909  err = -ENOMEM;
1910  netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1912  if (!netdev)
1913  goto err_alloc_etherdev;
1914 
1915  SET_NETDEV_DEV(netdev, &pdev->dev);
1916 
1917  pci_set_drvdata(pdev, netdev);
1918  adapter = netdev_priv(netdev);
1919  adapter->netdev = netdev;
1920  adapter->pdev = pdev;
1921  hw = &adapter->hw;
1922  hw->back = adapter;
1923  adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
1924 
1925  mmio_start = pci_resource_start(pdev, 0);
1926  mmio_len = pci_resource_len(pdev, 0);
1927 
1928  err = -EIO;
1929  hw->hw_addr = ioremap(mmio_start, mmio_len);
1930  if (!hw->hw_addr)
1931  goto err_ioremap;
1932 
1933  netdev->netdev_ops = &igb_netdev_ops;
1934  igb_set_ethtool_ops(netdev);
1935  netdev->watchdog_timeo = 5 * HZ;
1936 
1937  strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1938 
1939  netdev->mem_start = mmio_start;
1940  netdev->mem_end = mmio_start + mmio_len;
1941 
1942  /* PCI config space info */
1943  hw->vendor_id = pdev->vendor;
1944  hw->device_id = pdev->device;
1945  hw->revision_id = pdev->revision;
1948 
1949  /* Copy the default MAC, PHY and NVM function pointers */
1950  memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
1951  memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
1952  memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
1953  /* Initialize skew-specific constants */
1954  err = ei->get_invariants(hw);
1955  if (err)
1956  goto err_sw_init;
1957 
1958  /* setup the private structure */
1959  err = igb_sw_init(adapter);
1960  if (err)
1961  goto err_sw_init;
1962 
1964 
1965  hw->phy.autoneg_wait_to_complete = false;
1966 
1967  /* Copper options */
1968  if (hw->phy.media_type == e1000_media_type_copper) {
1969  hw->phy.mdix = AUTO_ALL_MODES;
1970  hw->phy.disable_polarity_correction = false;
1971  hw->phy.ms_type = e1000_ms_hw_default;
1972  }
1973 
1974  if (igb_check_reset_block(hw))
1975  dev_info(&pdev->dev,
1976  "PHY reset is blocked due to SOL/IDER session.\n");
1977 
1978  /*
1979  * features is initialized to 0 in allocation, it might have bits
1980  * set by igb_sw_init so we should use an or instead of an
1981  * assignment.
1982  */
1983  netdev->features |= NETIF_F_SG |
1984  NETIF_F_IP_CSUM |
1986  NETIF_F_TSO |
1987  NETIF_F_TSO6 |
1988  NETIF_F_RXHASH |
1989  NETIF_F_RXCSUM |
1990  NETIF_F_HW_VLAN_RX |
1992 
1993  /* copy netdev features into list of user selectable features */
1994  netdev->hw_features |= netdev->features;
1995  netdev->hw_features |= NETIF_F_RXALL;
1996 
1997  /* set this bit last since it cannot be part of hw_features */
1998  netdev->features |= NETIF_F_HW_VLAN_FILTER;
1999 
2000  netdev->vlan_features |= NETIF_F_TSO |
2001  NETIF_F_TSO6 |
2002  NETIF_F_IP_CSUM |
2004  NETIF_F_SG;
2005 
2006  netdev->priv_flags |= IFF_SUPP_NOFCS;
2007 
2008  if (pci_using_dac) {
2009  netdev->features |= NETIF_F_HIGHDMA;
2010  netdev->vlan_features |= NETIF_F_HIGHDMA;
2011  }
2012 
2013  if (hw->mac.type >= e1000_82576) {
2014  netdev->hw_features |= NETIF_F_SCTP_CSUM;
2015  netdev->features |= NETIF_F_SCTP_CSUM;
2016  }
2017 
2018  netdev->priv_flags |= IFF_UNICAST_FLT;
2019 
2020  adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2021 
2022  /* before reading the NVM, reset the controller to put the device in a
2023  * known good starting state */
2024  hw->mac.ops.reset_hw(hw);
2025 
2026  /*
2027  * make sure the NVM is good , i211 parts have special NVM that
2028  * doesn't contain a checksum
2029  */
2030  if (hw->mac.type != e1000_i211) {
2031  if (hw->nvm.ops.validate(hw) < 0) {
2032  dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2033  err = -EIO;
2034  goto err_eeprom;
2035  }
2036  }
2037 
2038  /* copy the MAC address out of the NVM */
2039  if (hw->mac.ops.read_mac_addr(hw))
2040  dev_err(&pdev->dev, "NVM Read Error\n");
2041 
2042  memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2043  memcpy(netdev->perm_addr, hw->mac.addr, netdev->addr_len);
2044 
2045  if (!is_valid_ether_addr(netdev->perm_addr)) {
2046  dev_err(&pdev->dev, "Invalid MAC Address\n");
2047  err = -EIO;
2048  goto err_eeprom;
2049  }
2050 
2051  /* get firmware version for ethtool -i */
2052  igb_set_fw_version(adapter);
2053 
2054  setup_timer(&adapter->watchdog_timer, igb_watchdog,
2055  (unsigned long) adapter);
2056  setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2057  (unsigned long) adapter);
2058 
2059  INIT_WORK(&adapter->reset_task, igb_reset_task);
2060  INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2061 
2062  /* Initialize link properties that are user-changeable */
2063  adapter->fc_autoneg = true;
2064  hw->mac.autoneg = true;
2065  hw->phy.autoneg_advertised = 0x2f;
2066 
2067  hw->fc.requested_mode = e1000_fc_default;
2068  hw->fc.current_mode = e1000_fc_default;
2069 
2071 
2072  /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
2073  * enable the ACPI Magic Packet filter
2074  */
2075 
2076  if (hw->bus.func == 0)
2077  hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
2078  else if (hw->mac.type >= e1000_82580)
2079  hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2080  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2081  &eeprom_data);
2082  else if (hw->bus.func == 1)
2083  hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2084 
2085  if (eeprom_data & eeprom_apme_mask)
2086  adapter->eeprom_wol |= E1000_WUFC_MAG;
2087 
2088  /* now that we have the eeprom settings, apply the special cases where
2089  * the eeprom may be wrong or the board simply won't support wake on
2090  * lan on a particular port */
2091  switch (pdev->device) {
2093  adapter->eeprom_wol = 0;
2094  break;
2098  /* Wake events only supported on port A for dual fiber
2099  * regardless of eeprom setting */
2101  adapter->eeprom_wol = 0;
2102  break;
2105  /* if quad port adapter, disable WoL on all but port A */
2106  if (global_quad_port_a != 0)
2107  adapter->eeprom_wol = 0;
2108  else
2109  adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2110  /* Reset for multiple quad port adapters */
2111  if (++global_quad_port_a == 4)
2112  global_quad_port_a = 0;
2113  break;
2114  }
2115 
2116  /* initialize the wol settings based on the eeprom settings */
2117  adapter->wol = adapter->eeprom_wol;
2118  device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2119 
2120  /* reset the hardware with the new settings */
2121  igb_reset(adapter);
2122 
2123  /* let the f/w know that the h/w is now under the control of the
2124  * driver. */
2125  igb_get_hw_control(adapter);
2126 
2127  strcpy(netdev->name, "eth%d");
2128  err = register_netdev(netdev);
2129  if (err)
2130  goto err_register;
2131 
2132  /* carrier off reporting is important to ethtool even BEFORE open */
2133  netif_carrier_off(netdev);
2134 
2135 #ifdef CONFIG_IGB_DCA
2136  if (dca_add_requester(&pdev->dev) == 0) {
2137  adapter->flags |= IGB_FLAG_DCA_ENABLED;
2138  dev_info(&pdev->dev, "DCA enabled\n");
2139  igb_setup_dca(adapter);
2140  }
2141 
2142 #endif
2143 
2144 #ifdef CONFIG_IGB_PTP
2145  /* do hw tstamp init after resetting */
2146  igb_ptp_init(adapter);
2147 #endif /* CONFIG_IGB_PTP */
2148 
2149  dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2150  /* print bus type/speed/width info */
2151  dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2152  netdev->name,
2153  ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2154  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2155  "unknown"),
2156  ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
2157  (hw->bus.width == e1000_bus_width_pcie_x2) ? "Width x2" :
2158  (hw->bus.width == e1000_bus_width_pcie_x1) ? "Width x1" :
2159  "unknown"),
2160  netdev->dev_addr);
2161 
2162  ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2163  if (ret_val)
2164  strcpy(part_str, "Unknown");
2165  dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2166  dev_info(&pdev->dev,
2167  "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2168  adapter->msix_entries ? "MSI-X" :
2169  (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2170  adapter->num_rx_queues, adapter->num_tx_queues);
2171  switch (hw->mac.type) {
2172  case e1000_i350:
2173  case e1000_i210:
2174  case e1000_i211:
2175  igb_set_eee_i350(hw);
2176  break;
2177  default:
2178  break;
2179  }
2180 
2181  pm_runtime_put_noidle(&pdev->dev);
2182  return 0;
2183 
2184 err_register:
2185  igb_release_hw_control(adapter);
2186 err_eeprom:
2187  if (!igb_check_reset_block(hw))
2188  igb_reset_phy(hw);
2189 
2190  if (hw->flash_address)
2191  iounmap(hw->flash_address);
2192 err_sw_init:
2193  igb_clear_interrupt_scheme(adapter);
2194  iounmap(hw->hw_addr);
2195 err_ioremap:
2196  free_netdev(netdev);
2197 err_alloc_etherdev:
2200 err_pci_reg:
2201 err_dma:
2202  pci_disable_device(pdev);
2203  return err;
2204 }
2205 
2215 static void __devexit igb_remove(struct pci_dev *pdev)
2216 {
2217  struct net_device *netdev = pci_get_drvdata(pdev);
2218  struct igb_adapter *adapter = netdev_priv(netdev);
2219  struct e1000_hw *hw = &adapter->hw;
2220 
2221  pm_runtime_get_noresume(&pdev->dev);
2222 #ifdef CONFIG_IGB_PTP
2223  igb_ptp_stop(adapter);
2224 #endif /* CONFIG_IGB_PTP */
2225 
2226  /*
2227  * The watchdog timer may be rescheduled, so explicitly
2228  * disable watchdog from being rescheduled.
2229  */
2230  set_bit(__IGB_DOWN, &adapter->state);
2231  del_timer_sync(&adapter->watchdog_timer);
2232  del_timer_sync(&adapter->phy_info_timer);
2233 
2234  cancel_work_sync(&adapter->reset_task);
2235  cancel_work_sync(&adapter->watchdog_task);
2236 
2237 #ifdef CONFIG_IGB_DCA
2238  if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2239  dev_info(&pdev->dev, "DCA disabled\n");
2240  dca_remove_requester(&pdev->dev);
2241  adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2243  }
2244 #endif
2245 
2246  /* Release control of h/w to f/w. If f/w is AMT enabled, this
2247  * would have already happened in close and is redundant. */
2248  igb_release_hw_control(adapter);
2249 
2250  unregister_netdev(netdev);
2251 
2252  igb_clear_interrupt_scheme(adapter);
2253 
2254 #ifdef CONFIG_PCI_IOV
2255  /* reclaim resources allocated to VFs */
2256  if (adapter->vf_data) {
2257  /* disable iov and allow time for transactions to clear */
2258  if (igb_vfs_are_assigned(adapter)) {
2259  dev_info(&pdev->dev, "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2260  } else {
2261  pci_disable_sriov(pdev);
2262  msleep(500);
2263  }
2264 
2265  kfree(adapter->vf_data);
2266  adapter->vf_data = NULL;
2268  wrfl();
2269  msleep(100);
2270  dev_info(&pdev->dev, "IOV Disabled\n");
2271  }
2272 #endif
2273 
2274  iounmap(hw->hw_addr);
2275  if (hw->flash_address)
2276  iounmap(hw->flash_address);
2279 
2280  kfree(adapter->shadow_vfta);
2281  free_netdev(netdev);
2282 
2284 
2285  pci_disable_device(pdev);
2286 }
2287 
2297 static void __devinit igb_probe_vfs(struct igb_adapter * adapter)
2298 {
2299 #ifdef CONFIG_PCI_IOV
2300  struct pci_dev *pdev = adapter->pdev;
2301  struct e1000_hw *hw = &adapter->hw;
2302  int old_vfs = pci_num_vf(adapter->pdev);
2303  int i;
2304 
2305  /* Virtualization features not supported on i210 family. */
2306  if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2307  return;
2308 
2309  if (old_vfs) {
2310  dev_info(&pdev->dev, "%d pre-allocated VFs found - override "
2311  "max_vfs setting of %d\n", old_vfs, max_vfs);
2312  adapter->vfs_allocated_count = old_vfs;
2313  }
2314 
2315  if (!adapter->vfs_allocated_count)
2316  return;
2317 
2318  adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2319  sizeof(struct vf_data_storage), GFP_KERNEL);
2320 
2321  /* if allocation failed then we do not support SR-IOV */
2322  if (!adapter->vf_data) {
2323  adapter->vfs_allocated_count = 0;
2324  dev_err(&pdev->dev, "Unable to allocate memory for VF "
2325  "Data Storage\n");
2326  goto out;
2327  }
2328 
2329  if (!old_vfs) {
2330  if (pci_enable_sriov(pdev, adapter->vfs_allocated_count))
2331  goto err_out;
2332  }
2333  dev_info(&pdev->dev, "%d VFs allocated\n",
2334  adapter->vfs_allocated_count);
2335  for (i = 0; i < adapter->vfs_allocated_count; i++)
2336  igb_vf_configure(adapter, i);
2337 
2338  /* DMA Coalescing is not supported in IOV mode. */
2339  adapter->flags &= ~IGB_FLAG_DMAC;
2340  goto out;
2341 err_out:
2342  kfree(adapter->vf_data);
2343  adapter->vf_data = NULL;
2344  adapter->vfs_allocated_count = 0;
2345 out:
2346  return;
2347 #endif /* CONFIG_PCI_IOV */
2348 }
2349 
2358 static int __devinit igb_sw_init(struct igb_adapter *adapter)
2359 {
2360  struct e1000_hw *hw = &adapter->hw;
2361  struct net_device *netdev = adapter->netdev;
2362  struct pci_dev *pdev = adapter->pdev;
2363  u32 max_rss_queues;
2364 
2365  pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2366 
2367  /* set default ring sizes */
2368  adapter->tx_ring_count = IGB_DEFAULT_TXD;
2369  adapter->rx_ring_count = IGB_DEFAULT_RXD;
2370 
2371  /* set default ITR values */
2372  adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2373  adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2374 
2375  /* set default work limits */
2377 
2378  adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2379  VLAN_HLEN;
2380  adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2381 
2382  spin_lock_init(&adapter->stats64_lock);
2383 #ifdef CONFIG_PCI_IOV
2384  switch (hw->mac.type) {
2385  case e1000_82576:
2386  case e1000_i350:
2387  if (max_vfs > 7) {
2388  dev_warn(&pdev->dev,
2389  "Maximum of 7 VFs per PF, using max\n");
2390  adapter->vfs_allocated_count = 7;
2391  } else
2392  adapter->vfs_allocated_count = max_vfs;
2393  break;
2394  default:
2395  break;
2396  }
2397 #endif /* CONFIG_PCI_IOV */
2398 
2399  /* Determine the maximum number of RSS queues supported. */
2400  switch (hw->mac.type) {
2401  case e1000_i211:
2402  max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2403  break;
2404  case e1000_82575:
2405  case e1000_i210:
2406  max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2407  break;
2408  case e1000_i350:
2409  /* I350 cannot do RSS and SR-IOV at the same time */
2410  if (!!adapter->vfs_allocated_count) {
2411  max_rss_queues = 1;
2412  break;
2413  }
2414  /* fall through */
2415  case e1000_82576:
2416  if (!!adapter->vfs_allocated_count) {
2417  max_rss_queues = 2;
2418  break;
2419  }
2420  /* fall through */
2421  case e1000_82580:
2422  default:
2423  max_rss_queues = IGB_MAX_RX_QUEUES;
2424  break;
2425  }
2426 
2427  adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2428 
2429  /* Determine if we need to pair queues. */
2430  switch (hw->mac.type) {
2431  case e1000_82575:
2432  case e1000_i211:
2433  /* Device supports enough interrupts without queue pairing. */
2434  break;
2435  case e1000_82576:
2436  /*
2437  * If VFs are going to be allocated with RSS queues then we
2438  * should pair the queues in order to conserve interrupts due
2439  * to limited supply.
2440  */
2441  if ((adapter->rss_queues > 1) &&
2442  (adapter->vfs_allocated_count > 6))
2443  adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2444  /* fall through */
2445  case e1000_82580:
2446  case e1000_i350:
2447  case e1000_i210:
2448  default:
2449  /*
2450  * If rss_queues > half of max_rss_queues, pair the queues in
2451  * order to conserve interrupts due to limited supply.
2452  */
2453  if (adapter->rss_queues > (max_rss_queues / 2))
2454  adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2455  break;
2456  }
2457 
2458  /* Setup and initialize a copy of the hw vlan table array */
2459  adapter->shadow_vfta = kzalloc(sizeof(u32) *
2461  GFP_ATOMIC);
2462 
2463  /* This call may decrease the number of queues */
2464  if (igb_init_interrupt_scheme(adapter)) {
2465  dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2466  return -ENOMEM;
2467  }
2468 
2469  igb_probe_vfs(adapter);
2470 
2471  /* Explicitly disable IRQ since the NIC can be in any state. */
2472  igb_irq_disable(adapter);
2473 
2474  if (hw->mac.type >= e1000_i350)
2475  adapter->flags &= ~IGB_FLAG_DMAC;
2476 
2477  set_bit(__IGB_DOWN, &adapter->state);
2478  return 0;
2479 }
2480 
2493 static int __igb_open(struct net_device *netdev, bool resuming)
2494 {
2495  struct igb_adapter *adapter = netdev_priv(netdev);
2496  struct e1000_hw *hw = &adapter->hw;
2497  struct pci_dev *pdev = adapter->pdev;
2498  int err;
2499  int i;
2500 
2501  /* disallow open during test */
2502  if (test_bit(__IGB_TESTING, &adapter->state)) {
2503  WARN_ON(resuming);
2504  return -EBUSY;
2505  }
2506 
2507  if (!resuming)
2508  pm_runtime_get_sync(&pdev->dev);
2509 
2510  netif_carrier_off(netdev);
2511 
2512  /* allocate transmit descriptors */
2513  err = igb_setup_all_tx_resources(adapter);
2514  if (err)
2515  goto err_setup_tx;
2516 
2517  /* allocate receive descriptors */
2518  err = igb_setup_all_rx_resources(adapter);
2519  if (err)
2520  goto err_setup_rx;
2521 
2522  igb_power_up_link(adapter);
2523 
2524  /* before we allocate an interrupt, we must be ready to handle it.
2525  * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2526  * as soon as we call pci_request_irq, so we have to setup our
2527  * clean_rx handler before we do so. */
2528  igb_configure(adapter);
2529 
2530  err = igb_request_irq(adapter);
2531  if (err)
2532  goto err_req_irq;
2533 
2534  /* From here on the code is the same as igb_up() */
2535  clear_bit(__IGB_DOWN, &adapter->state);
2536 
2537  for (i = 0; i < adapter->num_q_vectors; i++)
2538  napi_enable(&(adapter->q_vector[i]->napi));
2539 
2540  /* Clear any pending interrupts. */
2541  rd32(E1000_ICR);
2542 
2543  igb_irq_enable(adapter);
2544 
2545  /* notify VFs that reset has been completed */
2546  if (adapter->vfs_allocated_count) {
2548  reg_data |= E1000_CTRL_EXT_PFRSTD;
2549  wr32(E1000_CTRL_EXT, reg_data);
2550  }
2551 
2552  netif_tx_start_all_queues(netdev);
2553 
2554  if (!resuming)
2555  pm_runtime_put(&pdev->dev);
2556 
2557  /* start the watchdog. */
2558  hw->mac.get_link_status = 1;
2559  schedule_work(&adapter->watchdog_task);
2560 
2561  return 0;
2562 
2563 err_req_irq:
2564  igb_release_hw_control(adapter);
2565  igb_power_down_link(adapter);
2566  igb_free_all_rx_resources(adapter);
2567 err_setup_rx:
2568  igb_free_all_tx_resources(adapter);
2569 err_setup_tx:
2570  igb_reset(adapter);
2571  if (!resuming)
2572  pm_runtime_put(&pdev->dev);
2573 
2574  return err;
2575 }
2576 
2577 static int igb_open(struct net_device *netdev)
2578 {
2579  return __igb_open(netdev, false);
2580 }
2581 
2593 static int __igb_close(struct net_device *netdev, bool suspending)
2594 {
2595  struct igb_adapter *adapter = netdev_priv(netdev);
2596  struct pci_dev *pdev = adapter->pdev;
2597 
2598  WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2599 
2600  if (!suspending)
2601  pm_runtime_get_sync(&pdev->dev);
2602 
2603  igb_down(adapter);
2604  igb_free_irq(adapter);
2605 
2606  igb_free_all_tx_resources(adapter);
2607  igb_free_all_rx_resources(adapter);
2608 
2609  if (!suspending)
2610  pm_runtime_put_sync(&pdev->dev);
2611  return 0;
2612 }
2613 
2614 static int igb_close(struct net_device *netdev)
2615 {
2616  return __igb_close(netdev, false);
2617 }
2618 
2625 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2626 {
2627  struct device *dev = tx_ring->dev;
2628  int size;
2629 
2630  size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2631 
2632  tx_ring->tx_buffer_info = vzalloc(size);
2633  if (!tx_ring->tx_buffer_info)
2634  goto err;
2635 
2636  /* round up to nearest 4K */
2637  tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2638  tx_ring->size = ALIGN(tx_ring->size, 4096);
2639 
2640  tx_ring->desc = dma_alloc_coherent(dev,
2641  tx_ring->size,
2642  &tx_ring->dma,
2643  GFP_KERNEL);
2644  if (!tx_ring->desc)
2645  goto err;
2646 
2647  tx_ring->next_to_use = 0;
2648  tx_ring->next_to_clean = 0;
2649 
2650  return 0;
2651 
2652 err:
2653  vfree(tx_ring->tx_buffer_info);
2654  tx_ring->tx_buffer_info = NULL;
2655  dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2656  return -ENOMEM;
2657 }
2658 
2666 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2667 {
2668  struct pci_dev *pdev = adapter->pdev;
2669  int i, err = 0;
2670 
2671  for (i = 0; i < adapter->num_tx_queues; i++) {
2672  err = igb_setup_tx_resources(adapter->tx_ring[i]);
2673  if (err) {
2674  dev_err(&pdev->dev,
2675  "Allocation for Tx Queue %u failed\n", i);
2676  for (i--; i >= 0; i--)
2677  igb_free_tx_resources(adapter->tx_ring[i]);
2678  break;
2679  }
2680  }
2681 
2682  return err;
2683 }
2684 
2689 void igb_setup_tctl(struct igb_adapter *adapter)
2690 {
2691  struct e1000_hw *hw = &adapter->hw;
2692  u32 tctl;
2693 
2694  /* disable queue 0 which is enabled by default on 82575 and 82576 */
2695  wr32(E1000_TXDCTL(0), 0);
2696 
2697  /* Program the Transmit Control Register */
2698  tctl = rd32(E1000_TCTL);
2699  tctl &= ~E1000_TCTL_CT;
2700  tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2702 
2704 
2705  /* Enable transmits */
2706  tctl |= E1000_TCTL_EN;
2707 
2708  wr32(E1000_TCTL, tctl);
2709 }
2710 
2718 void igb_configure_tx_ring(struct igb_adapter *adapter,
2719  struct igb_ring *ring)
2720 {
2721  struct e1000_hw *hw = &adapter->hw;
2722  u32 txdctl = 0;
2723  u64 tdba = ring->dma;
2724  int reg_idx = ring->reg_idx;
2725 
2726  /* disable the queue */
2727  wr32(E1000_TXDCTL(reg_idx), 0);
2728  wrfl();
2729  mdelay(10);
2730 
2731  wr32(E1000_TDLEN(reg_idx),
2732  ring->count * sizeof(union e1000_adv_tx_desc));
2733  wr32(E1000_TDBAL(reg_idx),
2734  tdba & 0x00000000ffffffffULL);
2735  wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2736 
2737  ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2738  wr32(E1000_TDH(reg_idx), 0);
2739  writel(0, ring->tail);
2740 
2741  txdctl |= IGB_TX_PTHRESH;
2742  txdctl |= IGB_TX_HTHRESH << 8;
2743  txdctl |= IGB_TX_WTHRESH << 16;
2744 
2745  txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
2746  wr32(E1000_TXDCTL(reg_idx), txdctl);
2747 }
2748 
2755 static void igb_configure_tx(struct igb_adapter *adapter)
2756 {
2757  int i;
2758 
2759  for (i = 0; i < adapter->num_tx_queues; i++)
2760  igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
2761 }
2762 
2769 int igb_setup_rx_resources(struct igb_ring *rx_ring)
2770 {
2771  struct device *dev = rx_ring->dev;
2772  int size;
2773 
2774  size = sizeof(struct igb_rx_buffer) * rx_ring->count;
2775 
2776  rx_ring->rx_buffer_info = vzalloc(size);
2777  if (!rx_ring->rx_buffer_info)
2778  goto err;
2779 
2780 
2781  /* Round up to nearest 4K */
2782  rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
2783  rx_ring->size = ALIGN(rx_ring->size, 4096);
2784 
2785  rx_ring->desc = dma_alloc_coherent(dev,
2786  rx_ring->size,
2787  &rx_ring->dma,
2788  GFP_KERNEL);
2789  if (!rx_ring->desc)
2790  goto err;
2791 
2792  rx_ring->next_to_clean = 0;
2793  rx_ring->next_to_use = 0;
2794 
2795  return 0;
2796 
2797 err:
2798  vfree(rx_ring->rx_buffer_info);
2799  rx_ring->rx_buffer_info = NULL;
2800  dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2801  return -ENOMEM;
2802 }
2803 
2811 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
2812 {
2813  struct pci_dev *pdev = adapter->pdev;
2814  int i, err = 0;
2815 
2816  for (i = 0; i < adapter->num_rx_queues; i++) {
2817  err = igb_setup_rx_resources(adapter->rx_ring[i]);
2818  if (err) {
2819  dev_err(&pdev->dev,
2820  "Allocation for Rx Queue %u failed\n", i);
2821  for (i--; i >= 0; i--)
2822  igb_free_rx_resources(adapter->rx_ring[i]);
2823  break;
2824  }
2825  }
2826 
2827  return err;
2828 }
2829 
2834 static void igb_setup_mrqc(struct igb_adapter *adapter)
2835 {
2836  struct e1000_hw *hw = &adapter->hw;
2837  u32 mrqc, rxcsum;
2838  u32 j, num_rx_queues, shift = 0;
2839  static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
2840  0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
2841  0xA32DCB77, 0x0CF23080, 0x3BB7426A,
2842  0xFA01ACBE };
2843 
2844  /* Fill out hash function seeds */
2845  for (j = 0; j < 10; j++)
2846  wr32(E1000_RSSRK(j), rsskey[j]);
2847 
2848  num_rx_queues = adapter->rss_queues;
2849 
2850  switch (hw->mac.type) {
2851  case e1000_82575:
2852  shift = 6;
2853  break;
2854  case e1000_82576:
2855  /* 82576 supports 2 RSS queues for SR-IOV */
2856  if (adapter->vfs_allocated_count) {
2857  shift = 3;
2858  num_rx_queues = 2;
2859  }
2860  break;
2861  default:
2862  break;
2863  }
2864 
2865  /*
2866  * Populate the indirection table 4 entries at a time. To do this
2867  * we are generating the results for n and n+2 and then interleaving
2868  * those with the results with n+1 and n+3.
2869  */
2870  for (j = 0; j < 32; j++) {
2871  /* first pass generates n and n+2 */
2872  u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
2873  u32 reta = (base & 0x07800780) >> (7 - shift);
2874 
2875  /* second pass generates n+1 and n+3 */
2876  base += 0x00010001 * num_rx_queues;
2877  reta |= (base & 0x07800780) << (1 + shift);
2878 
2879  wr32(E1000_RETA(j), reta);
2880  }
2881 
2882  /*
2883  * Disable raw packet checksumming so that RSS hash is placed in
2884  * descriptor on writeback. No need to enable TCP/UDP/IP checksum
2885  * offloads as they are enabled by default
2886  */
2887  rxcsum = rd32(E1000_RXCSUM);
2888  rxcsum |= E1000_RXCSUM_PCSD;
2889 
2890  if (adapter->hw.mac.type >= e1000_82576)
2891  /* Enable Receive Checksum Offload for SCTP */
2892  rxcsum |= E1000_RXCSUM_CRCOFL;
2893 
2894  /* Don't need to set TUOFL or IPOFL, they default to 1 */
2895  wr32(E1000_RXCSUM, rxcsum);
2896  /*
2897  * Generate RSS hash based on TCP port numbers and/or
2898  * IPv4/v6 src and dst addresses since UDP cannot be
2899  * hashed reliably due to IP fragmentation
2900  */
2901 
2902  mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
2907 
2908  /* If VMDq is enabled then we set the appropriate mode for that, else
2909  * we default to RSS so that an RSS hash is calculated per packet even
2910  * if we are only using one queue */
2911  if (adapter->vfs_allocated_count) {
2912  if (hw->mac.type > e1000_82575) {
2913  /* Set the default pool for the PF's first queue */
2914  u32 vtctl = rd32(E1000_VT_CTL);
2915  vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
2917  vtctl |= adapter->vfs_allocated_count <<
2919  wr32(E1000_VT_CTL, vtctl);
2920  }
2921  if (adapter->rss_queues > 1)
2923  else
2924  mrqc |= E1000_MRQC_ENABLE_VMDQ;
2925  } else {
2926  if (hw->mac.type != e1000_i211)
2927  mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
2928  }
2929  igb_vmm_control(adapter);
2930 
2931  wr32(E1000_MRQC, mrqc);
2932 }
2933 
2938 void igb_setup_rctl(struct igb_adapter *adapter)
2939 {
2940  struct e1000_hw *hw = &adapter->hw;
2941  u32 rctl;
2942 
2943  rctl = rd32(E1000_RCTL);
2944 
2945  rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2947 
2949  (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2950 
2951  /*
2952  * enable stripping of CRC. It's unlikely this will break BMC
2953  * redirection as it did with e1000. Newer features require
2954  * that the HW strips the CRC.
2955  */
2956  rctl |= E1000_RCTL_SECRC;
2957 
2958  /* disable store bad packets and clear size bits. */
2959  rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
2960 
2961  /* enable LPE to prevent packets larger than max_frame_size */
2962  rctl |= E1000_RCTL_LPE;
2963 
2964  /* disable queue 0 to prevent tail write w/o re-config */
2965  wr32(E1000_RXDCTL(0), 0);
2966 
2967  /* Attention!!! For SR-IOV PF driver operations you must enable
2968  * queue drop for all VF and PF queues to prevent head of line blocking
2969  * if an un-trusted VF does not provide descriptors to hardware.
2970  */
2971  if (adapter->vfs_allocated_count) {
2972  /* set all queue drop enable bits */
2974  }
2975 
2976  /* This is useful for sniffing bad packets. */
2977  if (adapter->netdev->features & NETIF_F_RXALL) {
2978  /* UPE and MPE will be handled by normal PROMISC logic
2979  * in e1000e_set_rx_mode */
2980  rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981  E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982  E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983 
2984  rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985  E1000_RCTL_DPF | /* Allow filtered pause */
2986  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2987  /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988  * and that breaks VLANs.
2989  */
2990  }
2991 
2992  wr32(E1000_RCTL, rctl);
2993 }
2994 
2995 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
2996  int vfn)
2997 {
2998  struct e1000_hw *hw = &adapter->hw;
2999  u32 vmolr;
3000 
3001  /* if it isn't the PF check to see if VFs are enabled and
3002  * increase the size to support vlan tags */
3003  if (vfn < adapter->vfs_allocated_count &&
3004  adapter->vf_data[vfn].vlans_enabled)
3005  size += VLAN_TAG_SIZE;
3006 
3007  vmolr = rd32(E1000_VMOLR(vfn));
3008  vmolr &= ~E1000_VMOLR_RLPML_MASK;
3009  vmolr |= size | E1000_VMOLR_LPE;
3010  wr32(E1000_VMOLR(vfn), vmolr);
3011 
3012  return 0;
3013 }
3014 
3021 static void igb_rlpml_set(struct igb_adapter *adapter)
3022 {
3023  u32 max_frame_size = adapter->max_frame_size;
3024  struct e1000_hw *hw = &adapter->hw;
3025  u16 pf_id = adapter->vfs_allocated_count;
3026 
3027  if (pf_id) {
3028  igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3029  /*
3030  * If we're in VMDQ or SR-IOV mode, then set global RLPML
3031  * to our max jumbo frame size, in case we need to enable
3032  * jumbo frames on one of the rings later.
3033  * This will not pass over-length frames into the default
3034  * queue because it's gated by the VMOLR.RLPML.
3035  */
3036  max_frame_size = MAX_JUMBO_FRAME_SIZE;
3037  }
3038 
3039  wr32(E1000_RLPML, max_frame_size);
3040 }
3041 
3042 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3043  int vfn, bool aupe)
3044 {
3045  struct e1000_hw *hw = &adapter->hw;
3046  u32 vmolr;
3047 
3048  /*
3049  * This register exists only on 82576 and newer so if we are older then
3050  * we should exit and do nothing
3051  */
3052  if (hw->mac.type < e1000_82576)
3053  return;
3054 
3055  vmolr = rd32(E1000_VMOLR(vfn));
3056  vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3057  if (aupe)
3058  vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3059  else
3060  vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3061 
3062  /* clear all bits that might not be set */
3063  vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3064 
3065  if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3066  vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3067  /*
3068  * for VMDq only allow the VFs and pool 0 to accept broadcast and
3069  * multicast packets
3070  */
3071  if (vfn <= adapter->vfs_allocated_count)
3072  vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3073 
3074  wr32(E1000_VMOLR(vfn), vmolr);
3075 }
3076 
3084 void igb_configure_rx_ring(struct igb_adapter *adapter,
3085  struct igb_ring *ring)
3086 {
3087  struct e1000_hw *hw = &adapter->hw;
3088  u64 rdba = ring->dma;
3089  int reg_idx = ring->reg_idx;
3090  u32 srrctl = 0, rxdctl = 0;
3091 
3092  /* disable the queue */
3093  wr32(E1000_RXDCTL(reg_idx), 0);
3094 
3095  /* Set DMA base address registers */
3096  wr32(E1000_RDBAL(reg_idx),
3097  rdba & 0x00000000ffffffffULL);
3098  wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3099  wr32(E1000_RDLEN(reg_idx),
3100  ring->count * sizeof(union e1000_adv_rx_desc));
3101 
3102  /* initialize head and tail */
3103  ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3104  wr32(E1000_RDH(reg_idx), 0);
3105  writel(0, ring->tail);
3106 
3107  /* set descriptor configuration */
3109 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3111 #else
3112  srrctl |= (PAGE_SIZE / 2) >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3113 #endif
3115 #ifdef CONFIG_IGB_PTP
3116  if (hw->mac.type >= e1000_82580)
3117  srrctl |= E1000_SRRCTL_TIMESTAMP;
3118 #endif /* CONFIG_IGB_PTP */
3119  /* Only set Drop Enable if we are supporting multiple queues */
3120  if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3121  srrctl |= E1000_SRRCTL_DROP_EN;
3122 
3123  wr32(E1000_SRRCTL(reg_idx), srrctl);
3124 
3125  /* set filtering for VMDQ pools */
3126  igb_set_vmolr(adapter, reg_idx & 0x7, true);
3127 
3128  rxdctl |= IGB_RX_PTHRESH;
3129  rxdctl |= IGB_RX_HTHRESH << 8;
3130  rxdctl |= IGB_RX_WTHRESH << 16;
3131 
3132  /* enable receive descriptor fetching */
3133  rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3134  wr32(E1000_RXDCTL(reg_idx), rxdctl);
3135 }
3136 
3143 static void igb_configure_rx(struct igb_adapter *adapter)
3144 {
3145  int i;
3146 
3147  /* set UTA to appropriate mode */
3148  igb_set_uta(adapter);
3149 
3150  /* set the correct pool for the PF default MAC address in entry 0 */
3151  igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3152  adapter->vfs_allocated_count);
3153 
3154  /* Setup the HW Rx Head and Tail Descriptor Pointers and
3155  * the Base and Length of the Rx Descriptor Ring */
3156  for (i = 0; i < adapter->num_rx_queues; i++)
3157  igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3158 }
3159 
3166 void igb_free_tx_resources(struct igb_ring *tx_ring)
3167 {
3168  igb_clean_tx_ring(tx_ring);
3169 
3170  vfree(tx_ring->tx_buffer_info);
3171  tx_ring->tx_buffer_info = NULL;
3172 
3173  /* if not set, then don't free */
3174  if (!tx_ring->desc)
3175  return;
3176 
3177  dma_free_coherent(tx_ring->dev, tx_ring->size,
3178  tx_ring->desc, tx_ring->dma);
3179 
3180  tx_ring->desc = NULL;
3181 }
3182 
3189 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3190 {
3191  int i;
3192 
3193  for (i = 0; i < adapter->num_tx_queues; i++)
3194  igb_free_tx_resources(adapter->tx_ring[i]);
3195 }
3196 
3198  struct igb_tx_buffer *tx_buffer)
3199 {
3200  if (tx_buffer->skb) {
3201  dev_kfree_skb_any(tx_buffer->skb);
3202  if (dma_unmap_len(tx_buffer, len))
3203  dma_unmap_single(ring->dev,
3204  dma_unmap_addr(tx_buffer, dma),
3205  dma_unmap_len(tx_buffer, len),
3206  DMA_TO_DEVICE);
3207  } else if (dma_unmap_len(tx_buffer, len)) {
3208  dma_unmap_page(ring->dev,
3209  dma_unmap_addr(tx_buffer, dma),
3210  dma_unmap_len(tx_buffer, len),
3211  DMA_TO_DEVICE);
3212  }
3213  tx_buffer->next_to_watch = NULL;
3214  tx_buffer->skb = NULL;
3215  dma_unmap_len_set(tx_buffer, len, 0);
3216  /* buffer_info must be completely set up in the transmit path */
3217 }
3218 
3223 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3224 {
3225  struct igb_tx_buffer *buffer_info;
3226  unsigned long size;
3227  u16 i;
3228 
3229  if (!tx_ring->tx_buffer_info)
3230  return;
3231  /* Free all the Tx ring sk_buffs */
3232 
3233  for (i = 0; i < tx_ring->count; i++) {
3234  buffer_info = &tx_ring->tx_buffer_info[i];
3235  igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3236  }
3237 
3238  netdev_tx_reset_queue(txring_txq(tx_ring));
3239 
3240  size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3241  memset(tx_ring->tx_buffer_info, 0, size);
3242 
3243  /* Zero out the descriptor ring */
3244  memset(tx_ring->desc, 0, tx_ring->size);
3245 
3246  tx_ring->next_to_use = 0;
3247  tx_ring->next_to_clean = 0;
3248 }
3249 
3254 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3255 {
3256  int i;
3257 
3258  for (i = 0; i < adapter->num_tx_queues; i++)
3259  igb_clean_tx_ring(adapter->tx_ring[i]);
3260 }
3261 
3268 void igb_free_rx_resources(struct igb_ring *rx_ring)
3269 {
3270  igb_clean_rx_ring(rx_ring);
3271 
3272  vfree(rx_ring->rx_buffer_info);
3273  rx_ring->rx_buffer_info = NULL;
3274 
3275  /* if not set, then don't free */
3276  if (!rx_ring->desc)
3277  return;
3278 
3279  dma_free_coherent(rx_ring->dev, rx_ring->size,
3280  rx_ring->desc, rx_ring->dma);
3281 
3282  rx_ring->desc = NULL;
3283 }
3284 
3291 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3292 {
3293  int i;
3294 
3295  for (i = 0; i < adapter->num_rx_queues; i++)
3296  igb_free_rx_resources(adapter->rx_ring[i]);
3297 }
3298 
3303 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3304 {
3305  unsigned long size;
3306  u16 i;
3307 
3308  if (!rx_ring->rx_buffer_info)
3309  return;
3310 
3311  /* Free all the Rx ring sk_buffs */
3312  for (i = 0; i < rx_ring->count; i++) {
3313  struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3314  if (buffer_info->dma) {
3315  dma_unmap_single(rx_ring->dev,
3316  buffer_info->dma,
3318  DMA_FROM_DEVICE);
3319  buffer_info->dma = 0;
3320  }
3321 
3322  if (buffer_info->skb) {
3323  dev_kfree_skb(buffer_info->skb);
3324  buffer_info->skb = NULL;
3325  }
3326  if (buffer_info->page_dma) {
3327  dma_unmap_page(rx_ring->dev,
3328  buffer_info->page_dma,
3329  PAGE_SIZE / 2,
3330  DMA_FROM_DEVICE);
3331  buffer_info->page_dma = 0;
3332  }
3333  if (buffer_info->page) {
3334  put_page(buffer_info->page);
3335  buffer_info->page = NULL;
3336  buffer_info->page_offset = 0;
3337  }
3338  }
3339 
3340  size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3341  memset(rx_ring->rx_buffer_info, 0, size);
3342 
3343  /* Zero out the descriptor ring */
3344  memset(rx_ring->desc, 0, rx_ring->size);
3345 
3346  rx_ring->next_to_clean = 0;
3347  rx_ring->next_to_use = 0;
3348 }
3349 
3354 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3355 {
3356  int i;
3357 
3358  for (i = 0; i < adapter->num_rx_queues; i++)
3359  igb_clean_rx_ring(adapter->rx_ring[i]);
3360 }
3361 
3369 static int igb_set_mac(struct net_device *netdev, void *p)
3370 {
3371  struct igb_adapter *adapter = netdev_priv(netdev);
3372  struct e1000_hw *hw = &adapter->hw;
3373  struct sockaddr *addr = p;
3374 
3375  if (!is_valid_ether_addr(addr->sa_data))
3376  return -EADDRNOTAVAIL;
3377 
3378  memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3379  memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3380 
3381  /* set the correct pool for the new PF MAC address in entry 0 */
3382  igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3383  adapter->vfs_allocated_count);
3384 
3385  return 0;
3386 }
3387 
3397 static int igb_write_mc_addr_list(struct net_device *netdev)
3398 {
3399  struct igb_adapter *adapter = netdev_priv(netdev);
3400  struct e1000_hw *hw = &adapter->hw;
3401  struct netdev_hw_addr *ha;
3402  u8 *mta_list;
3403  int i;
3404 
3405  if (netdev_mc_empty(netdev)) {
3406  /* nothing to program, so clear mc list */
3407  igb_update_mc_addr_list(hw, NULL, 0);
3408  igb_restore_vf_multicasts(adapter);
3409  return 0;
3410  }
3411 
3412  mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3413  if (!mta_list)
3414  return -ENOMEM;
3415 
3416  /* The shared function expects a packed array of only addresses. */
3417  i = 0;
3418  netdev_for_each_mc_addr(ha, netdev)
3419  memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3420 
3421  igb_update_mc_addr_list(hw, mta_list, i);
3422  kfree(mta_list);
3423 
3424  return netdev_mc_count(netdev);
3425 }
3426 
3436 static int igb_write_uc_addr_list(struct net_device *netdev)
3437 {
3438  struct igb_adapter *adapter = netdev_priv(netdev);
3439  struct e1000_hw *hw = &adapter->hw;
3440  unsigned int vfn = adapter->vfs_allocated_count;
3441  unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3442  int count = 0;
3443 
3444  /* return ENOMEM indicating insufficient memory for addresses */
3445  if (netdev_uc_count(netdev) > rar_entries)
3446  return -ENOMEM;
3447 
3448  if (!netdev_uc_empty(netdev) && rar_entries) {
3449  struct netdev_hw_addr *ha;
3450 
3451  netdev_for_each_uc_addr(ha, netdev) {
3452  if (!rar_entries)
3453  break;
3454  igb_rar_set_qsel(adapter, ha->addr,
3455  rar_entries--,
3456  vfn);
3457  count++;
3458  }
3459  }
3460  /* write the addresses in reverse order to avoid write combining */
3461  for (; rar_entries > 0 ; rar_entries--) {
3462  wr32(E1000_RAH(rar_entries), 0);
3463  wr32(E1000_RAL(rar_entries), 0);
3464  }
3465  wrfl();
3466 
3467  return count;
3468 }
3469 
3479 static void igb_set_rx_mode(struct net_device *netdev)
3480 {
3481  struct igb_adapter *adapter = netdev_priv(netdev);
3482  struct e1000_hw *hw = &adapter->hw;
3483  unsigned int vfn = adapter->vfs_allocated_count;
3484  u32 rctl, vmolr = 0;
3485  int count;
3486 
3487  /* Check for Promiscuous and All Multicast modes */
3488  rctl = rd32(E1000_RCTL);
3489 
3490  /* clear the effected bits */
3492 
3493  if (netdev->flags & IFF_PROMISC) {
3494  rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3495  vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3496  } else {
3497  if (netdev->flags & IFF_ALLMULTI) {
3498  rctl |= E1000_RCTL_MPE;
3499  vmolr |= E1000_VMOLR_MPME;
3500  } else {
3501  /*
3502  * Write addresses to the MTA, if the attempt fails
3503  * then we should just turn on promiscuous mode so
3504  * that we can at least receive multicast traffic
3505  */
3506  count = igb_write_mc_addr_list(netdev);
3507  if (count < 0) {
3508  rctl |= E1000_RCTL_MPE;
3509  vmolr |= E1000_VMOLR_MPME;
3510  } else if (count) {
3511  vmolr |= E1000_VMOLR_ROMPE;
3512  }
3513  }
3514  /*
3515  * Write addresses to available RAR registers, if there is not
3516  * sufficient space to store all the addresses then enable
3517  * unicast promiscuous mode
3518  */
3519  count = igb_write_uc_addr_list(netdev);
3520  if (count < 0) {
3521  rctl |= E1000_RCTL_UPE;
3522  vmolr |= E1000_VMOLR_ROPE;
3523  }
3524  rctl |= E1000_RCTL_VFE;
3525  }
3526  wr32(E1000_RCTL, rctl);
3527 
3528  /*
3529  * In order to support SR-IOV and eventually VMDq it is necessary to set
3530  * the VMOLR to enable the appropriate modes. Without this workaround
3531  * we will have issues with VLAN tag stripping not being done for frames
3532  * that are only arriving because we are the default pool
3533  */
3534  if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3535  return;
3536 
3537  vmolr |= rd32(E1000_VMOLR(vfn)) &
3539  wr32(E1000_VMOLR(vfn), vmolr);
3540  igb_restore_vf_multicasts(adapter);
3541 }
3542 
3543 static void igb_check_wvbr(struct igb_adapter *adapter)
3544 {
3545  struct e1000_hw *hw = &adapter->hw;
3546  u32 wvbr = 0;
3547 
3548  switch (hw->mac.type) {
3549  case e1000_82576:
3550  case e1000_i350:
3551  if (!(wvbr = rd32(E1000_WVBR)))
3552  return;
3553  break;
3554  default:
3555  break;
3556  }
3557 
3558  adapter->wvbr |= wvbr;
3559 }
3560 
3561 #define IGB_STAGGERED_QUEUE_OFFSET 8
3562 
3563 static void igb_spoof_check(struct igb_adapter *adapter)
3564 {
3565  int j;
3566 
3567  if (!adapter->wvbr)
3568  return;
3569 
3570  for(j = 0; j < adapter->vfs_allocated_count; j++) {
3571  if (adapter->wvbr & (1 << j) ||
3572  adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3573  dev_warn(&adapter->pdev->dev,
3574  "Spoof event(s) detected on VF %d\n", j);
3575  adapter->wvbr &=
3576  ~((1 << j) |
3577  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3578  }
3579  }
3580 }
3581 
3582 /* Need to wait a few seconds after link up to get diagnostic information from
3583  * the phy */
3584 static void igb_update_phy_info(unsigned long data)
3585 {
3586  struct igb_adapter *adapter = (struct igb_adapter *) data;
3587  igb_get_phy_info(&adapter->hw);
3588 }
3589 
3594 bool igb_has_link(struct igb_adapter *adapter)
3595 {
3596  struct e1000_hw *hw = &adapter->hw;
3597  bool link_active = false;
3598  s32 ret_val = 0;
3599 
3600  /* get_link_status is set on LSC (link status) interrupt or
3601  * rx sequence error interrupt. get_link_status will stay
3602  * false until the e1000_check_for_link establishes link
3603  * for copper adapters ONLY
3604  */
3605  switch (hw->phy.media_type) {
3607  if (hw->mac.get_link_status) {
3608  ret_val = hw->mac.ops.check_for_link(hw);
3609  link_active = !hw->mac.get_link_status;
3610  } else {
3611  link_active = true;
3612  }
3613  break;
3615  ret_val = hw->mac.ops.check_for_link(hw);
3616  link_active = hw->mac.serdes_has_link;
3617  break;
3618  default:
3620  break;
3621  }
3622 
3623  return link_active;
3624 }
3625 
3626 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3627 {
3628  bool ret = false;
3629  u32 ctrl_ext, thstat;
3630 
3631  /* check for thermal sensor event on i350 copper only */
3632  if (hw->mac.type == e1000_i350) {
3633  thstat = rd32(E1000_THSTAT);
3634  ctrl_ext = rd32(E1000_CTRL_EXT);
3635 
3636  if ((hw->phy.media_type == e1000_media_type_copper) &&
3637  !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3638  ret = !!(thstat & event);
3639  }
3640  }
3641 
3642  return ret;
3643 }
3644 
3649 static void igb_watchdog(unsigned long data)
3650 {
3651  struct igb_adapter *adapter = (struct igb_adapter *)data;
3652  /* Do the rest outside of interrupt context */
3653  schedule_work(&adapter->watchdog_task);
3654 }
3655 
3656 static void igb_watchdog_task(struct work_struct *work)
3657 {
3658  struct igb_adapter *adapter = container_of(work,
3659  struct igb_adapter,
3660  watchdog_task);
3661  struct e1000_hw *hw = &adapter->hw;
3662  struct net_device *netdev = adapter->netdev;
3663  u32 link;
3664  int i;
3665 
3666  link = igb_has_link(adapter);
3667  if (link) {
3668  /* Cancel scheduled suspend requests. */
3669  pm_runtime_resume(netdev->dev.parent);
3670 
3671  if (!netif_carrier_ok(netdev)) {
3672  u32 ctrl;
3673  hw->mac.ops.get_speed_and_duplex(hw,
3674  &adapter->link_speed,
3675  &adapter->link_duplex);
3676 
3677  ctrl = rd32(E1000_CTRL);
3678  /* Links status message must follow this format */
3679  printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3680  "Duplex, Flow Control: %s\n",
3681  netdev->name,
3682  adapter->link_speed,
3683  adapter->link_duplex == FULL_DUPLEX ?
3684  "Full" : "Half",
3685  (ctrl & E1000_CTRL_TFCE) &&
3686  (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3687  (ctrl & E1000_CTRL_RFCE) ? "RX" :
3688  (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3689 
3690  /* check for thermal sensor event */
3691  if (igb_thermal_sensor_event(hw,
3693  netdev_info(netdev, "The network adapter link "
3694  "speed was downshifted because it "
3695  "overheated\n");
3696  }
3697 
3698  /* adjust timeout factor according to speed/duplex */
3699  adapter->tx_timeout_factor = 1;
3700  switch (adapter->link_speed) {
3701  case SPEED_10:
3702  adapter->tx_timeout_factor = 14;
3703  break;
3704  case SPEED_100:
3705  /* maybe add some timeout factor ? */
3706  break;
3707  }
3708 
3709  netif_carrier_on(netdev);
3710 
3711  igb_ping_all_vfs(adapter);
3712  igb_check_vf_rate_limit(adapter);
3713 
3714  /* link state has changed, schedule phy info update */
3715  if (!test_bit(__IGB_DOWN, &adapter->state))
3716  mod_timer(&adapter->phy_info_timer,
3717  round_jiffies(jiffies + 2 * HZ));
3718  }
3719  } else {
3720  if (netif_carrier_ok(netdev)) {
3721  adapter->link_speed = 0;
3722  adapter->link_duplex = 0;
3723 
3724  /* check for thermal sensor event */
3725  if (igb_thermal_sensor_event(hw,
3727  netdev_err(netdev, "The network adapter was "
3728  "stopped because it overheated\n");
3729  }
3730 
3731  /* Links status message must follow this format */
3732  printk(KERN_INFO "igb: %s NIC Link is Down\n",
3733  netdev->name);
3734  netif_carrier_off(netdev);
3735 
3736  igb_ping_all_vfs(adapter);
3737 
3738  /* link state has changed, schedule phy info update */
3739  if (!test_bit(__IGB_DOWN, &adapter->state))
3740  mod_timer(&adapter->phy_info_timer,
3741  round_jiffies(jiffies + 2 * HZ));
3742 
3743  pm_schedule_suspend(netdev->dev.parent,
3744  MSEC_PER_SEC * 5);
3745  }
3746  }
3747 
3748  spin_lock(&adapter->stats64_lock);
3749  igb_update_stats(adapter, &adapter->stats64);
3750  spin_unlock(&adapter->stats64_lock);
3751 
3752  for (i = 0; i < adapter->num_tx_queues; i++) {
3753  struct igb_ring *tx_ring = adapter->tx_ring[i];
3754  if (!netif_carrier_ok(netdev)) {
3755  /* We've lost link, so the controller stops DMA,
3756  * but we've got queued Tx work that's never going
3757  * to get done, so reset controller to flush Tx.
3758  * (Do the reset outside of interrupt context). */
3759  if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
3760  adapter->tx_timeout_count++;
3761  schedule_work(&adapter->reset_task);
3762  /* return immediately since reset is imminent */
3763  return;
3764  }
3765  }
3766 
3767  /* Force detection of hung controller every watchdog period */
3769  }
3770 
3771  /* Cause software interrupt to ensure rx ring is cleaned */
3772  if (adapter->msix_entries) {
3773  u32 eics = 0;
3774  for (i = 0; i < adapter->num_q_vectors; i++)
3775  eics |= adapter->q_vector[i]->eims_value;
3776  wr32(E1000_EICS, eics);
3777  } else {
3779  }
3780 
3781  igb_spoof_check(adapter);
3782 
3783  /* Reset the timer */
3784  if (!test_bit(__IGB_DOWN, &adapter->state))
3785  mod_timer(&adapter->watchdog_timer,
3786  round_jiffies(jiffies + 2 * HZ));
3787 }
3788 
3794 };
3795 
3812 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
3813 {
3814  int new_val = q_vector->itr_val;
3815  int avg_wire_size = 0;
3816  struct igb_adapter *adapter = q_vector->adapter;
3817  unsigned int packets;
3818 
3819  /* For non-gigabit speeds, just fix the interrupt rate at 4000
3820  * ints/sec - ITR timer value of 120 ticks.
3821  */
3822  if (adapter->link_speed != SPEED_1000) {
3823  new_val = IGB_4K_ITR;
3824  goto set_itr_val;
3825  }
3826 
3827  packets = q_vector->rx.total_packets;
3828  if (packets)
3829  avg_wire_size = q_vector->rx.total_bytes / packets;
3830 
3831  packets = q_vector->tx.total_packets;
3832  if (packets)
3833  avg_wire_size = max_t(u32, avg_wire_size,
3834  q_vector->tx.total_bytes / packets);
3835 
3836  /* if avg_wire_size isn't set no work was done */
3837  if (!avg_wire_size)
3838  goto clear_counts;
3839 
3840  /* Add 24 bytes to size to account for CRC, preamble, and gap */
3841  avg_wire_size += 24;
3842 
3843  /* Don't starve jumbo frames */
3844  avg_wire_size = min(avg_wire_size, 3000);
3845 
3846  /* Give a little boost to mid-size frames */
3847  if ((avg_wire_size > 300) && (avg_wire_size < 1200))
3848  new_val = avg_wire_size / 3;
3849  else
3850  new_val = avg_wire_size / 2;
3851 
3852  /* conservative mode (itr 3) eliminates the lowest_latency setting */
3853  if (new_val < IGB_20K_ITR &&
3854  ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3855  (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3856  new_val = IGB_20K_ITR;
3857 
3858 set_itr_val:
3859  if (new_val != q_vector->itr_val) {
3860  q_vector->itr_val = new_val;
3861  q_vector->set_itr = 1;
3862  }
3863 clear_counts:
3864  q_vector->rx.total_bytes = 0;
3865  q_vector->rx.total_packets = 0;
3866  q_vector->tx.total_bytes = 0;
3867  q_vector->tx.total_packets = 0;
3868 }
3869 
3886 static void igb_update_itr(struct igb_q_vector *q_vector,
3887  struct igb_ring_container *ring_container)
3888 {
3889  unsigned int packets = ring_container->total_packets;
3890  unsigned int bytes = ring_container->total_bytes;
3891  u8 itrval = ring_container->itr;
3892 
3893  /* no packets, exit with status unchanged */
3894  if (packets == 0)
3895  return;
3896 
3897  switch (itrval) {
3898  case lowest_latency:
3899  /* handle TSO and jumbo frames */
3900  if (bytes/packets > 8000)
3901  itrval = bulk_latency;
3902  else if ((packets < 5) && (bytes > 512))
3903  itrval = low_latency;
3904  break;
3905  case low_latency: /* 50 usec aka 20000 ints/s */
3906  if (bytes > 10000) {
3907  /* this if handles the TSO accounting */
3908  if (bytes/packets > 8000) {
3909  itrval = bulk_latency;
3910  } else if ((packets < 10) || ((bytes/packets) > 1200)) {
3911  itrval = bulk_latency;
3912  } else if ((packets > 35)) {
3913  itrval = lowest_latency;
3914  }
3915  } else if (bytes/packets > 2000) {
3916  itrval = bulk_latency;
3917  } else if (packets <= 2 && bytes < 512) {
3918  itrval = lowest_latency;
3919  }
3920  break;
3921  case bulk_latency: /* 250 usec aka 4000 ints/s */
3922  if (bytes > 25000) {
3923  if (packets > 35)
3924  itrval = low_latency;
3925  } else if (bytes < 1500) {
3926  itrval = low_latency;
3927  }
3928  break;
3929  }
3930 
3931  /* clear work counters since we have the values we need */
3932  ring_container->total_bytes = 0;
3933  ring_container->total_packets = 0;
3934 
3935  /* write updated itr to ring container */
3936  ring_container->itr = itrval;
3937 }
3938 
3939 static void igb_set_itr(struct igb_q_vector *q_vector)
3940 {
3941  struct igb_adapter *adapter = q_vector->adapter;
3942  u32 new_itr = q_vector->itr_val;
3943  u8 current_itr = 0;
3944 
3945  /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3946  if (adapter->link_speed != SPEED_1000) {
3947  current_itr = 0;
3948  new_itr = IGB_4K_ITR;
3949  goto set_itr_now;
3950  }
3951 
3952  igb_update_itr(q_vector, &q_vector->tx);
3953  igb_update_itr(q_vector, &q_vector->rx);
3954 
3955  current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3956 
3957  /* conservative mode (itr 3) eliminates the lowest_latency setting */
3958  if (current_itr == lowest_latency &&
3959  ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3960  (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3961  current_itr = low_latency;
3962 
3963  switch (current_itr) {
3964  /* counts and packets in update_itr are dependent on these numbers */
3965  case lowest_latency:
3966  new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
3967  break;
3968  case low_latency:
3969  new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
3970  break;
3971  case bulk_latency:
3972  new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
3973  break;
3974  default:
3975  break;
3976  }
3977 
3978 set_itr_now:
3979  if (new_itr != q_vector->itr_val) {
3980  /* this attempts to bias the interrupt rate towards Bulk
3981  * by adding intermediate steps when interrupt rate is
3982  * increasing */
3983  new_itr = new_itr > q_vector->itr_val ?
3984  max((new_itr * q_vector->itr_val) /
3985  (new_itr + (q_vector->itr_val >> 2)),
3986  new_itr) :
3987  new_itr;
3988  /* Don't write the value here; it resets the adapter's
3989  * internal timer, and causes us to delay far longer than
3990  * we should between interrupts. Instead, we write the ITR
3991  * value at the beginning of the next interrupt so the timing
3992  * ends up being correct.
3993  */
3994  q_vector->itr_val = new_itr;
3995  q_vector->set_itr = 1;
3996  }
3997 }
3998 
3999 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4000  u32 type_tucmd, u32 mss_l4len_idx)
4001 {
4002  struct e1000_adv_tx_context_desc *context_desc;
4003  u16 i = tx_ring->next_to_use;
4004 
4005  context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4006 
4007  i++;
4008  tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4009 
4010  /* set bits to identify this as an advanced context descriptor */
4012 
4013  /* For 82575, context index must be unique per ring. */
4014  if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4015  mss_l4len_idx |= tx_ring->reg_idx << 4;
4016 
4017  context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4018  context_desc->seqnum_seed = 0;
4019  context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4020  context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4021 }
4022 
4023 static int igb_tso(struct igb_ring *tx_ring,
4024  struct igb_tx_buffer *first,
4025  u8 *hdr_len)
4026 {
4027  struct sk_buff *skb = first->skb;
4028  u32 vlan_macip_lens, type_tucmd;
4029  u32 mss_l4len_idx, l4len;
4030 
4031  if (!skb_is_gso(skb))
4032  return 0;
4033 
4034  if (skb_header_cloned(skb)) {
4035  int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4036  if (err)
4037  return err;
4038  }
4039 
4040  /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4041  type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4042 
4043  if (first->protocol == __constant_htons(ETH_P_IP)) {
4044  struct iphdr *iph = ip_hdr(skb);
4045  iph->tot_len = 0;
4046  iph->check = 0;
4047  tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4048  iph->daddr, 0,
4049  IPPROTO_TCP,
4050  0);
4051  type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4052  first->tx_flags |= IGB_TX_FLAGS_TSO |
4055  } else if (skb_is_gso_v6(skb)) {
4056  ipv6_hdr(skb)->payload_len = 0;
4057  tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4058  &ipv6_hdr(skb)->daddr,
4059  0, IPPROTO_TCP, 0);
4060  first->tx_flags |= IGB_TX_FLAGS_TSO |
4062  }
4063 
4064  /* compute header lengths */
4065  l4len = tcp_hdrlen(skb);
4066  *hdr_len = skb_transport_offset(skb) + l4len;
4067 
4068  /* update gso size and bytecount with header size */
4069  first->gso_segs = skb_shinfo(skb)->gso_segs;
4070  first->bytecount += (first->gso_segs - 1) * *hdr_len;
4071 
4072  /* MSS L4LEN IDX */
4073  mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4074  mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4075 
4076  /* VLAN MACLEN IPLEN */
4077  vlan_macip_lens = skb_network_header_len(skb);
4078  vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4079  vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4080 
4081  igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4082 
4083  return 1;
4084 }
4085 
4086 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4087 {
4088  struct sk_buff *skb = first->skb;
4089  u32 vlan_macip_lens = 0;
4090  u32 mss_l4len_idx = 0;
4091  u32 type_tucmd = 0;
4092 
4093  if (skb->ip_summed != CHECKSUM_PARTIAL) {
4094  if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4095  return;
4096  } else {
4097  u8 l4_hdr = 0;
4098  switch (first->protocol) {
4099  case __constant_htons(ETH_P_IP):
4100  vlan_macip_lens |= skb_network_header_len(skb);
4101  type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4102  l4_hdr = ip_hdr(skb)->protocol;
4103  break;
4105  vlan_macip_lens |= skb_network_header_len(skb);
4106  l4_hdr = ipv6_hdr(skb)->nexthdr;
4107  break;
4108  default:
4109  if (unlikely(net_ratelimit())) {
4110  dev_warn(tx_ring->dev,
4111  "partial checksum but proto=%x!\n",
4112  first->protocol);
4113  }
4114  break;
4115  }
4116 
4117  switch (l4_hdr) {
4118  case IPPROTO_TCP:
4119  type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4120  mss_l4len_idx = tcp_hdrlen(skb) <<
4122  break;
4123  case IPPROTO_SCTP:
4124  type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4125  mss_l4len_idx = sizeof(struct sctphdr) <<
4127  break;
4128  case IPPROTO_UDP:
4129  mss_l4len_idx = sizeof(struct udphdr) <<
4130  E1000_ADVTXD_L4LEN_SHIFT;
4131  break;
4132  default:
4133  if (unlikely(net_ratelimit())) {
4134  dev_warn(tx_ring->dev,
4135  "partial checksum but l4 proto=%x!\n",
4136  l4_hdr);
4137  }
4138  break;
4139  }
4140 
4141  /* update TX checksum flag */
4142  first->tx_flags |= IGB_TX_FLAGS_CSUM;
4143  }
4144 
4145  vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4146  vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4147 
4148  igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4149 }
4150 
4151 static __le32 igb_tx_cmd_type(u32 tx_flags)
4152 {
4153  /* set type for advanced descriptor with frame checksum insertion */
4157 
4158  /* set HW vlan bit if vlan is present */
4159  if (tx_flags & IGB_TX_FLAGS_VLAN)
4160  cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_VLE);
4161 
4162 #ifdef CONFIG_IGB_PTP
4163  /* set timestamp bit if present */
4164  if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP))
4165  cmd_type |= cpu_to_le32(E1000_ADVTXD_MAC_TSTAMP);
4166 #endif /* CONFIG_IGB_PTP */
4167 
4168  /* set segmentation bits for TSO */
4169  if (tx_flags & IGB_TX_FLAGS_TSO)
4170  cmd_type |= cpu_to_le32(E1000_ADVTXD_DCMD_TSE);
4171 
4172  return cmd_type;
4173 }
4174 
4175 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4176  union e1000_adv_tx_desc *tx_desc,
4177  u32 tx_flags, unsigned int paylen)
4178 {
4179  u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4180 
4181  /* 82575 requires a unique index per ring if any offload is enabled */
4182  if ((tx_flags & (IGB_TX_FLAGS_CSUM | IGB_TX_FLAGS_VLAN)) &&
4184  olinfo_status |= tx_ring->reg_idx << 4;
4185 
4186  /* insert L4 checksum */
4187  if (tx_flags & IGB_TX_FLAGS_CSUM) {
4188  olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
4189 
4190  /* insert IPv4 checksum */
4191  if (tx_flags & IGB_TX_FLAGS_IPV4)
4192  olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
4193  }
4194 
4195  tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4196 }
4197 
4198 /*
4199  * The largest size we can write to the descriptor is 65535. In order to
4200  * maintain a power of two alignment we have to limit ourselves to 32K.
4201  */
4202 #define IGB_MAX_TXD_PWR 15
4203 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
4204 
4205 static void igb_tx_map(struct igb_ring *tx_ring,
4206  struct igb_tx_buffer *first,
4207  const u8 hdr_len)
4208 {
4209  struct sk_buff *skb = first->skb;
4210  struct igb_tx_buffer *tx_buffer;
4211  union e1000_adv_tx_desc *tx_desc;
4212  dma_addr_t dma;
4213  struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
4214  unsigned int data_len = skb->data_len;
4215  unsigned int size = skb_headlen(skb);
4216  unsigned int paylen = skb->len - hdr_len;
4217  __le32 cmd_type;
4218  u32 tx_flags = first->tx_flags;
4219  u16 i = tx_ring->next_to_use;
4220 
4221  tx_desc = IGB_TX_DESC(tx_ring, i);
4222 
4223  igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen);
4224  cmd_type = igb_tx_cmd_type(tx_flags);
4225 
4226  dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4227  if (dma_mapping_error(tx_ring->dev, dma))
4228  goto dma_error;
4229 
4230  /* record length, and DMA address */
4231  dma_unmap_len_set(first, len, size);
4232  dma_unmap_addr_set(first, dma, dma);
4233  tx_desc->read.buffer_addr = cpu_to_le64(dma);
4234 
4235  for (;;) {
4236  while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4237  tx_desc->read.cmd_type_len =
4238  cmd_type | cpu_to_le32(IGB_MAX_DATA_PER_TXD);
4239 
4240  i++;
4241  tx_desc++;
4242  if (i == tx_ring->count) {
4243  tx_desc = IGB_TX_DESC(tx_ring, 0);
4244  i = 0;
4245  }
4246 
4247  dma += IGB_MAX_DATA_PER_TXD;
4248  size -= IGB_MAX_DATA_PER_TXD;
4249 
4250  tx_desc->read.olinfo_status = 0;
4251  tx_desc->read.buffer_addr = cpu_to_le64(dma);
4252  }
4253 
4254  if (likely(!data_len))
4255  break;
4256 
4257  tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4258 
4259  i++;
4260  tx_desc++;
4261  if (i == tx_ring->count) {
4262  tx_desc = IGB_TX_DESC(tx_ring, 0);
4263  i = 0;
4264  }
4265 
4266  size = skb_frag_size(frag);
4267  data_len -= size;
4268 
4269  dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4270  size, DMA_TO_DEVICE);
4271  if (dma_mapping_error(tx_ring->dev, dma))
4272  goto dma_error;
4273 
4274  tx_buffer = &tx_ring->tx_buffer_info[i];
4275  dma_unmap_len_set(tx_buffer, len, size);
4276  dma_unmap_addr_set(tx_buffer, dma, dma);
4277 
4278  tx_desc->read.olinfo_status = 0;
4279  tx_desc->read.buffer_addr = cpu_to_le64(dma);
4280 
4281  frag++;
4282  }
4283 
4284  netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4285 
4286  /* write last descriptor with RS and EOP bits */
4287  cmd_type |= cpu_to_le32(size) | cpu_to_le32(IGB_TXD_DCMD);
4288  if (unlikely(skb->no_fcs))
4289  cmd_type &= ~(cpu_to_le32(E1000_ADVTXD_DCMD_IFCS));
4290  tx_desc->read.cmd_type_len = cmd_type;
4291 
4292  /* set the timestamp */
4293  first->time_stamp = jiffies;
4294 
4295  /*
4296  * Force memory writes to complete before letting h/w know there
4297  * are new descriptors to fetch. (Only applicable for weak-ordered
4298  * memory model archs, such as IA-64).
4299  *
4300  * We also need this memory barrier to make certain all of the
4301  * status bits have been updated before next_to_watch is written.
4302  */
4303  wmb();
4304 
4305  /* set next_to_watch value indicating a packet is present */
4306  first->next_to_watch = tx_desc;
4307 
4308  i++;
4309  if (i == tx_ring->count)
4310  i = 0;
4311 
4312  tx_ring->next_to_use = i;
4313 
4314  writel(i, tx_ring->tail);
4315 
4316  /* we need this if more than one processor can write to our tail
4317  * at a time, it syncronizes IO on IA64/Altix systems */
4318  mmiowb();
4319 
4320  return;
4321 
4322 dma_error:
4323  dev_err(tx_ring->dev, "TX DMA map failed\n");
4324 
4325  /* clear dma mappings for failed tx_buffer_info map */
4326  for (;;) {
4327  tx_buffer = &tx_ring->tx_buffer_info[i];
4328  igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4329  if (tx_buffer == first)
4330  break;
4331  if (i == 0)
4332  i = tx_ring->count;
4333  i--;
4334  }
4335 
4336  tx_ring->next_to_use = i;
4337 }
4338 
4339 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4340 {
4341  struct net_device *netdev = tx_ring->netdev;
4342 
4343  netif_stop_subqueue(netdev, tx_ring->queue_index);
4344 
4345  /* Herbert's original patch had:
4346  * smp_mb__after_netif_stop_queue();
4347  * but since that doesn't exist yet, just open code it. */
4348  smp_mb();
4349 
4350  /* We need to check again in a case another CPU has just
4351  * made room available. */
4352  if (igb_desc_unused(tx_ring) < size)
4353  return -EBUSY;
4354 
4355  /* A reprieve! */
4356  netif_wake_subqueue(netdev, tx_ring->queue_index);
4357 
4358  u64_stats_update_begin(&tx_ring->tx_syncp2);
4359  tx_ring->tx_stats.restart_queue2++;
4360  u64_stats_update_end(&tx_ring->tx_syncp2);
4361 
4362  return 0;
4363 }
4364 
4365 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4366 {
4367  if (igb_desc_unused(tx_ring) >= size)
4368  return 0;
4369  return __igb_maybe_stop_tx(tx_ring, size);
4370 }
4371 
4373  struct igb_ring *tx_ring)
4374 {
4375 #ifdef CONFIG_IGB_PTP
4376  struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4377 #endif /* CONFIG_IGB_PTP */
4378  struct igb_tx_buffer *first;
4379  int tso;
4380  u32 tx_flags = 0;
4381  __be16 protocol = vlan_get_protocol(skb);
4382  u8 hdr_len = 0;
4383 
4384  /* need: 1 descriptor per page,
4385  * + 2 desc gap to keep tail from touching head,
4386  * + 1 desc for skb->data,
4387  * + 1 desc for context descriptor,
4388  * otherwise try next time */
4389  if (igb_maybe_stop_tx(tx_ring, skb_shinfo(skb)->nr_frags + 4)) {
4390  /* this is a hard error */
4391  return NETDEV_TX_BUSY;
4392  }
4393 
4394  /* record the location of the first descriptor for this packet */
4395  first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4396  first->skb = skb;
4397  first->bytecount = skb->len;
4398  first->gso_segs = 1;
4399 
4400 #ifdef CONFIG_IGB_PTP
4401  if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4402  !(adapter->ptp_tx_skb))) {
4403  skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4404  tx_flags |= IGB_TX_FLAGS_TSTAMP;
4405 
4406  adapter->ptp_tx_skb = skb_get(skb);
4407  if (adapter->hw.mac.type == e1000_82576)
4408  schedule_work(&adapter->ptp_tx_work);
4409  }
4410 #endif /* CONFIG_IGB_PTP */
4411 
4412  if (vlan_tx_tag_present(skb)) {
4413  tx_flags |= IGB_TX_FLAGS_VLAN;
4414  tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4415  }
4416 
4417  /* record initial flags and protocol */
4418  first->tx_flags = tx_flags;
4419  first->protocol = protocol;
4420 
4421  tso = igb_tso(tx_ring, first, &hdr_len);
4422  if (tso < 0)
4423  goto out_drop;
4424  else if (!tso)
4425  igb_tx_csum(tx_ring, first);
4426 
4427  igb_tx_map(tx_ring, first, hdr_len);
4428 
4429  /* Make sure there is space in the ring for the next send. */
4430  igb_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 4);
4431 
4432  return NETDEV_TX_OK;
4433 
4434 out_drop:
4435  igb_unmap_and_free_tx_resource(tx_ring, first);
4436 
4437  return NETDEV_TX_OK;
4438 }
4439 
4440 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4441  struct sk_buff *skb)
4442 {
4443  unsigned int r_idx = skb->queue_mapping;
4444 
4445  if (r_idx >= adapter->num_tx_queues)
4446  r_idx = r_idx % adapter->num_tx_queues;
4447 
4448  return adapter->tx_ring[r_idx];
4449 }
4450 
4451 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4452  struct net_device *netdev)
4453 {
4454  struct igb_adapter *adapter = netdev_priv(netdev);
4455 
4456  if (test_bit(__IGB_DOWN, &adapter->state)) {
4457  dev_kfree_skb_any(skb);
4458  return NETDEV_TX_OK;
4459  }
4460 
4461  if (skb->len <= 0) {
4462  dev_kfree_skb_any(skb);
4463  return NETDEV_TX_OK;
4464  }
4465 
4466  /*
4467  * The minimum packet size with TCTL.PSP set is 17 so pad the skb
4468  * in order to meet this minimum size requirement.
4469  */
4470  if (skb->len < 17) {
4471  if (skb_padto(skb, 17))
4472  return NETDEV_TX_OK;
4473  skb->len = 17;
4474  }
4475 
4476  return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4477 }
4478 
4483 static void igb_tx_timeout(struct net_device *netdev)
4484 {
4485  struct igb_adapter *adapter = netdev_priv(netdev);
4486  struct e1000_hw *hw = &adapter->hw;
4487 
4488  /* Do the reset outside of interrupt context */
4489  adapter->tx_timeout_count++;
4490 
4491  if (hw->mac.type >= e1000_82580)
4492  hw->dev_spec._82575.global_device_reset = true;
4493 
4494  schedule_work(&adapter->reset_task);
4495  wr32(E1000_EICS,
4496  (adapter->eims_enable_mask & ~adapter->eims_other));
4497 }
4498 
4499 static void igb_reset_task(struct work_struct *work)
4500 {
4501  struct igb_adapter *adapter;
4502  adapter = container_of(work, struct igb_adapter, reset_task);
4503 
4504  igb_dump(adapter);
4505  netdev_err(adapter->netdev, "Reset adapter\n");
4506  igb_reinit_locked(adapter);
4507 }
4508 
4515 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4516  struct rtnl_link_stats64 *stats)
4517 {
4518  struct igb_adapter *adapter = netdev_priv(netdev);
4519 
4520  spin_lock(&adapter->stats64_lock);
4521  igb_update_stats(adapter, &adapter->stats64);
4522  memcpy(stats, &adapter->stats64, sizeof(*stats));
4523  spin_unlock(&adapter->stats64_lock);
4524 
4525  return stats;
4526 }
4527 
4535 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4536 {
4537  struct igb_adapter *adapter = netdev_priv(netdev);
4538  struct pci_dev *pdev = adapter->pdev;
4539  int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4540 
4541  if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4542  dev_err(&pdev->dev, "Invalid MTU setting\n");
4543  return -EINVAL;
4544  }
4545 
4546 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4547  if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4548  dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4549  return -EINVAL;
4550  }
4551 
4552  while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4553  msleep(1);
4554 
4555  /* igb_down has a dependency on max_frame_size */
4556  adapter->max_frame_size = max_frame;
4557 
4558  if (netif_running(netdev))
4559  igb_down(adapter);
4560 
4561  dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4562  netdev->mtu, new_mtu);
4563  netdev->mtu = new_mtu;
4564 
4565  if (netif_running(netdev))
4566  igb_up(adapter);
4567  else
4568  igb_reset(adapter);
4569 
4570  clear_bit(__IGB_RESETTING, &adapter->state);
4571 
4572  return 0;
4573 }
4574 
4580 void igb_update_stats(struct igb_adapter *adapter,
4581  struct rtnl_link_stats64 *net_stats)
4582 {
4583  struct e1000_hw *hw = &adapter->hw;
4584  struct pci_dev *pdev = adapter->pdev;
4585  u32 reg, mpc;
4586  u16 phy_tmp;
4587  int i;
4588  u64 bytes, packets;
4589  unsigned int start;
4590  u64 _bytes, _packets;
4591 
4592 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4593 
4594  /*
4595  * Prevent stats update while adapter is being reset, or if the pci
4596  * connection is down.
4597  */
4598  if (adapter->link_speed == 0)
4599  return;
4600  if (pci_channel_offline(pdev))
4601  return;
4602 
4603  bytes = 0;
4604  packets = 0;
4605  for (i = 0; i < adapter->num_rx_queues; i++) {
4606  u32 rqdpc = rd32(E1000_RQDPC(i));
4607  struct igb_ring *ring = adapter->rx_ring[i];
4608 
4609  if (rqdpc) {
4610  ring->rx_stats.drops += rqdpc;
4611  net_stats->rx_fifo_errors += rqdpc;
4612  }
4613 
4614  do {
4615  start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4616  _bytes = ring->rx_stats.bytes;
4617  _packets = ring->rx_stats.packets;
4618  } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4619  bytes += _bytes;
4620  packets += _packets;
4621  }
4622 
4623  net_stats->rx_bytes = bytes;
4624  net_stats->rx_packets = packets;
4625 
4626  bytes = 0;
4627  packets = 0;
4628  for (i = 0; i < adapter->num_tx_queues; i++) {
4629  struct igb_ring *ring = adapter->tx_ring[i];
4630  do {
4631  start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4632  _bytes = ring->tx_stats.bytes;
4633  _packets = ring->tx_stats.packets;
4634  } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4635  bytes += _bytes;
4636  packets += _packets;
4637  }
4638  net_stats->tx_bytes = bytes;
4639  net_stats->tx_packets = packets;
4640 
4641  /* read stats registers */
4642  adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4643  adapter->stats.gprc += rd32(E1000_GPRC);
4644  adapter->stats.gorc += rd32(E1000_GORCL);
4645  rd32(E1000_GORCH); /* clear GORCL */
4646  adapter->stats.bprc += rd32(E1000_BPRC);
4647  adapter->stats.mprc += rd32(E1000_MPRC);
4648  adapter->stats.roc += rd32(E1000_ROC);
4649 
4650  adapter->stats.prc64 += rd32(E1000_PRC64);
4651  adapter->stats.prc127 += rd32(E1000_PRC127);
4652  adapter->stats.prc255 += rd32(E1000_PRC255);
4653  adapter->stats.prc511 += rd32(E1000_PRC511);
4654  adapter->stats.prc1023 += rd32(E1000_PRC1023);
4655  adapter->stats.prc1522 += rd32(E1000_PRC1522);
4656  adapter->stats.symerrs += rd32(E1000_SYMERRS);
4657  adapter->stats.sec += rd32(E1000_SEC);
4658 
4659  mpc = rd32(E1000_MPC);
4660  adapter->stats.mpc += mpc;
4661  net_stats->rx_fifo_errors += mpc;
4662  adapter->stats.scc += rd32(E1000_SCC);
4663  adapter->stats.ecol += rd32(E1000_ECOL);
4664  adapter->stats.mcc += rd32(E1000_MCC);
4665  adapter->stats.latecol += rd32(E1000_LATECOL);
4666  adapter->stats.dc += rd32(E1000_DC);
4667  adapter->stats.rlec += rd32(E1000_RLEC);
4668  adapter->stats.xonrxc += rd32(E1000_XONRXC);
4669  adapter->stats.xontxc += rd32(E1000_XONTXC);
4670  adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4671  adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4672  adapter->stats.fcruc += rd32(E1000_FCRUC);
4673  adapter->stats.gptc += rd32(E1000_GPTC);
4674  adapter->stats.gotc += rd32(E1000_GOTCL);
4675  rd32(E1000_GOTCH); /* clear GOTCL */
4676  adapter->stats.rnbc += rd32(E1000_RNBC);
4677  adapter->stats.ruc += rd32(E1000_RUC);
4678  adapter->stats.rfc += rd32(E1000_RFC);
4679  adapter->stats.rjc += rd32(E1000_RJC);
4680  adapter->stats.tor += rd32(E1000_TORH);
4681  adapter->stats.tot += rd32(E1000_TOTH);
4682  adapter->stats.tpr += rd32(E1000_TPR);
4683 
4684  adapter->stats.ptc64 += rd32(E1000_PTC64);
4685  adapter->stats.ptc127 += rd32(E1000_PTC127);
4686  adapter->stats.ptc255 += rd32(E1000_PTC255);
4687  adapter->stats.ptc511 += rd32(E1000_PTC511);
4688  adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4689  adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4690 
4691  adapter->stats.mptc += rd32(E1000_MPTC);
4692  adapter->stats.bptc += rd32(E1000_BPTC);
4693 
4694  adapter->stats.tpt += rd32(E1000_TPT);
4695  adapter->stats.colc += rd32(E1000_COLC);
4696 
4697  adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4698  /* read internal phy specific stats */
4699  reg = rd32(E1000_CTRL_EXT);
4700  if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4701  adapter->stats.rxerrc += rd32(E1000_RXERRC);
4702 
4703  /* this stat has invalid values on i210/i211 */
4704  if ((hw->mac.type != e1000_i210) &&
4705  (hw->mac.type != e1000_i211))
4706  adapter->stats.tncrs += rd32(E1000_TNCRS);
4707  }
4708 
4709  adapter->stats.tsctc += rd32(E1000_TSCTC);
4710  adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4711 
4712  adapter->stats.iac += rd32(E1000_IAC);
4713  adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4714  adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4715  adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4716  adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4717  adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4718  adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4719  adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4720  adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4721 
4722  /* Fill out the OS statistics structure */
4723  net_stats->multicast = adapter->stats.mprc;
4724  net_stats->collisions = adapter->stats.colc;
4725 
4726  /* Rx Errors */
4727 
4728  /* RLEC on some newer hardware can be incorrect so build
4729  * our own version based on RUC and ROC */
4730  net_stats->rx_errors = adapter->stats.rxerrc +
4731  adapter->stats.crcerrs + adapter->stats.algnerrc +
4732  adapter->stats.ruc + adapter->stats.roc +
4733  adapter->stats.cexterr;
4734  net_stats->rx_length_errors = adapter->stats.ruc +
4735  adapter->stats.roc;
4736  net_stats->rx_crc_errors = adapter->stats.crcerrs;
4737  net_stats->rx_frame_errors = adapter->stats.algnerrc;
4738  net_stats->rx_missed_errors = adapter->stats.mpc;
4739 
4740  /* Tx Errors */
4741  net_stats->tx_errors = adapter->stats.ecol +
4742  adapter->stats.latecol;
4743  net_stats->tx_aborted_errors = adapter->stats.ecol;
4744  net_stats->tx_window_errors = adapter->stats.latecol;
4745  net_stats->tx_carrier_errors = adapter->stats.tncrs;
4746 
4747  /* Tx Dropped needs to be maintained elsewhere */
4748 
4749  /* Phy Stats */
4750  if (hw->phy.media_type == e1000_media_type_copper) {
4751  if ((adapter->link_speed == SPEED_1000) &&
4752  (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
4753  phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
4754  adapter->phy_stats.idle_errors += phy_tmp;
4755  }
4756  }
4757 
4758  /* Management Stats */
4759  adapter->stats.mgptc += rd32(E1000_MGTPTC);
4760  adapter->stats.mgprc += rd32(E1000_MGTPRC);
4761  adapter->stats.mgpdc += rd32(E1000_MGTPDC);
4762 
4763  /* OS2BMC Stats */
4764  reg = rd32(E1000_MANC);
4765  if (reg & E1000_MANC_EN_BMC2OS) {
4766  adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
4767  adapter->stats.o2bspc += rd32(E1000_O2BSPC);
4768  adapter->stats.b2ospc += rd32(E1000_B2OSPC);
4769  adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
4770  }
4771 }
4772 
4773 static irqreturn_t igb_msix_other(int irq, void *data)
4774 {
4775  struct igb_adapter *adapter = data;
4776  struct e1000_hw *hw = &adapter->hw;
4777  u32 icr = rd32(E1000_ICR);
4778  /* reading ICR causes bit 31 of EICR to be cleared */
4779 
4780  if (icr & E1000_ICR_DRSTA)
4781  schedule_work(&adapter->reset_task);
4782 
4783  if (icr & E1000_ICR_DOUTSYNC) {
4784  /* HW is reporting DMA is out of sync */
4785  adapter->stats.doosync++;
4786  /* The DMA Out of Sync is also indication of a spoof event
4787  * in IOV mode. Check the Wrong VM Behavior register to
4788  * see if it is really a spoof event. */
4789  igb_check_wvbr(adapter);
4790  }
4791 
4792  /* Check for a mailbox event */
4793  if (icr & E1000_ICR_VMMB)
4794  igb_msg_task(adapter);
4795 
4796  if (icr & E1000_ICR_LSC) {
4797  hw->mac.get_link_status = 1;
4798  /* guard against interrupt when we're going down */
4799  if (!test_bit(__IGB_DOWN, &adapter->state))
4800  mod_timer(&adapter->watchdog_timer, jiffies + 1);
4801  }
4802 
4803 #ifdef CONFIG_IGB_PTP
4804  if (icr & E1000_ICR_TS) {
4805  u32 tsicr = rd32(E1000_TSICR);
4806 
4807  if (tsicr & E1000_TSICR_TXTS) {
4808  /* acknowledge the interrupt */
4809  wr32(E1000_TSICR, E1000_TSICR_TXTS);
4810  /* retrieve hardware timestamp */
4811  schedule_work(&adapter->ptp_tx_work);
4812  }
4813  }
4814 #endif /* CONFIG_IGB_PTP */
4815 
4816  wr32(E1000_EIMS, adapter->eims_other);
4817 
4818  return IRQ_HANDLED;
4819 }
4820 
4821 static void igb_write_itr(struct igb_q_vector *q_vector)
4822 {
4823  struct igb_adapter *adapter = q_vector->adapter;
4824  u32 itr_val = q_vector->itr_val & 0x7FFC;
4825 
4826  if (!q_vector->set_itr)
4827  return;
4828 
4829  if (!itr_val)
4830  itr_val = 0x4;
4831 
4832  if (adapter->hw.mac.type == e1000_82575)
4833  itr_val |= itr_val << 16;
4834  else
4835  itr_val |= E1000_EITR_CNT_IGNR;
4836 
4837  writel(itr_val, q_vector->itr_register);
4838  q_vector->set_itr = 0;
4839 }
4840 
4841 static irqreturn_t igb_msix_ring(int irq, void *data)
4842 {
4843  struct igb_q_vector *q_vector = data;
4844 
4845  /* Write the ITR value calculated from the previous interrupt. */
4846  igb_write_itr(q_vector);
4847 
4848  napi_schedule(&q_vector->napi);
4849 
4850  return IRQ_HANDLED;
4851 }
4852 
4853 #ifdef CONFIG_IGB_DCA
4854 static void igb_update_dca(struct igb_q_vector *q_vector)
4855 {
4856  struct igb_adapter *adapter = q_vector->adapter;
4857  struct e1000_hw *hw = &adapter->hw;
4858  int cpu = get_cpu();
4859 
4860  if (q_vector->cpu == cpu)
4861  goto out_no_update;
4862 
4863  if (q_vector->tx.ring) {
4864  int q = q_vector->tx.ring->reg_idx;
4865  u32 dca_txctrl = rd32(E1000_DCA_TXCTRL(q));
4866  if (hw->mac.type == e1000_82575) {
4867  dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK;
4868  dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4869  } else {
4870  dca_txctrl &= ~E1000_DCA_TXCTRL_CPUID_MASK_82576;
4871  dca_txctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4873  }
4874  dca_txctrl |= E1000_DCA_TXCTRL_DESC_DCA_EN;
4875  wr32(E1000_DCA_TXCTRL(q), dca_txctrl);
4876  }
4877  if (q_vector->rx.ring) {
4878  int q = q_vector->rx.ring->reg_idx;
4879  u32 dca_rxctrl = rd32(E1000_DCA_RXCTRL(q));
4880  if (hw->mac.type == e1000_82575) {
4881  dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK;
4882  dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu);
4883  } else {
4884  dca_rxctrl &= ~E1000_DCA_RXCTRL_CPUID_MASK_82576;
4885  dca_rxctrl |= dca3_get_tag(&adapter->pdev->dev, cpu) <<
4887  }
4888  dca_rxctrl |= E1000_DCA_RXCTRL_DESC_DCA_EN;
4889  dca_rxctrl |= E1000_DCA_RXCTRL_HEAD_DCA_EN;
4890  dca_rxctrl |= E1000_DCA_RXCTRL_DATA_DCA_EN;
4891  wr32(E1000_DCA_RXCTRL(q), dca_rxctrl);
4892  }
4893  q_vector->cpu = cpu;
4894 out_no_update:
4895  put_cpu();
4896 }
4897 
4898 static void igb_setup_dca(struct igb_adapter *adapter)
4899 {
4900  struct e1000_hw *hw = &adapter->hw;
4901  int i;
4902 
4903  if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
4904  return;
4905 
4906  /* Always use CB2 mode, difference is masked in the CB driver. */
4908 
4909  for (i = 0; i < adapter->num_q_vectors; i++) {
4910  adapter->q_vector[i]->cpu = -1;
4911  igb_update_dca(adapter->q_vector[i]);
4912  }
4913 }
4914 
4915 static int __igb_notify_dca(struct device *dev, void *data)
4916 {
4917  struct net_device *netdev = dev_get_drvdata(dev);
4918  struct igb_adapter *adapter = netdev_priv(netdev);
4919  struct pci_dev *pdev = adapter->pdev;
4920  struct e1000_hw *hw = &adapter->hw;
4921  unsigned long event = *(unsigned long *)data;
4922 
4923  switch (event) {
4924  case DCA_PROVIDER_ADD:
4925  /* if already enabled, don't do it again */
4926  if (adapter->flags & IGB_FLAG_DCA_ENABLED)
4927  break;
4928  if (dca_add_requester(dev) == 0) {
4929  adapter->flags |= IGB_FLAG_DCA_ENABLED;
4930  dev_info(&pdev->dev, "DCA enabled\n");
4931  igb_setup_dca(adapter);
4932  break;
4933  }
4934  /* Fall Through since DCA is disabled. */
4935  case DCA_PROVIDER_REMOVE:
4936  if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
4937  /* without this a class_device is left
4938  * hanging around in the sysfs model */
4939  dca_remove_requester(dev);
4940  dev_info(&pdev->dev, "DCA disabled\n");
4941  adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
4943  }
4944  break;
4945  }
4946 
4947  return 0;
4948 }
4949 
4950 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
4951  void *p)
4952 {
4953  int ret_val;
4954 
4955  ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
4956  __igb_notify_dca);
4957 
4958  return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
4959 }
4960 #endif /* CONFIG_IGB_DCA */
4961 
4962 #ifdef CONFIG_PCI_IOV
4963 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
4964 {
4965  unsigned char mac_addr[ETH_ALEN];
4966 
4967  eth_random_addr(mac_addr);
4968  igb_set_vf_mac(adapter, vf, mac_addr);
4969 
4970  return 0;
4971 }
4972 
4973 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
4974 {
4975  struct pci_dev *pdev = adapter->pdev;
4976  struct pci_dev *vfdev;
4977  int dev_id;
4978 
4979  switch (adapter->hw.mac.type) {
4980  case e1000_82576:
4981  dev_id = IGB_82576_VF_DEV_ID;
4982  break;
4983  case e1000_i350:
4984  dev_id = IGB_I350_VF_DEV_ID;
4985  break;
4986  default:
4987  return false;
4988  }
4989 
4990  /* loop through all the VFs to see if we own any that are assigned */
4991  vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
4992  while (vfdev) {
4993  /* if we don't own it we don't care */
4994  if (vfdev->is_virtfn && vfdev->physfn == pdev) {
4995  /* if it is assigned we cannot release it */
4996  if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
4997  return true;
4998  }
4999 
5000  vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5001  }
5002 
5003  return false;
5004 }
5005 
5006 #endif
5007 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5008 {
5009  struct e1000_hw *hw = &adapter->hw;
5010  u32 ping;
5011  int i;
5012 
5013  for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5014  ping = E1000_PF_CONTROL_MSG;
5015  if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5016  ping |= E1000_VT_MSGTYPE_CTS;
5017  igb_write_mbx(hw, &ping, 1, i);
5018  }
5019 }
5020 
5021 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5022 {
5023  struct e1000_hw *hw = &adapter->hw;
5024  u32 vmolr = rd32(E1000_VMOLR(vf));
5025  struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5026 
5027  vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5030 
5031  if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5032  vmolr |= E1000_VMOLR_MPME;
5033  vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5034  *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5035  } else {
5036  /*
5037  * if we have hashes and we are clearing a multicast promisc
5038  * flag we need to write the hashes to the MTA as this step
5039  * was previously skipped
5040  */
5041  if (vf_data->num_vf_mc_hashes > 30) {
5042  vmolr |= E1000_VMOLR_MPME;
5043  } else if (vf_data->num_vf_mc_hashes) {
5044  int j;
5045  vmolr |= E1000_VMOLR_ROMPE;
5046  for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5047  igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5048  }
5049  }
5050 
5051  wr32(E1000_VMOLR(vf), vmolr);
5052 
5053  /* there are flags left unprocessed, likely not supported */
5054  if (*msgbuf & E1000_VT_MSGINFO_MASK)
5055  return -EINVAL;
5056 
5057  return 0;
5058 
5059 }
5060 
5061 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5062  u32 *msgbuf, u32 vf)
5063 {
5064  int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5065  u16 *hash_list = (u16 *)&msgbuf[1];
5066  struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5067  int i;
5068 
5069  /* salt away the number of multicast addresses assigned
5070  * to this VF for later use to restore when the PF multi cast
5071  * list changes
5072  */
5073  vf_data->num_vf_mc_hashes = n;
5074 
5075  /* only up to 30 hash values supported */
5076  if (n > 30)
5077  n = 30;
5078 
5079  /* store the hashes for later use */
5080  for (i = 0; i < n; i++)
5081  vf_data->vf_mc_hashes[i] = hash_list[i];
5082 
5083  /* Flush and reset the mta with the new values */
5084  igb_set_rx_mode(adapter->netdev);
5085 
5086  return 0;
5087 }
5088 
5089 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5090 {
5091  struct e1000_hw *hw = &adapter->hw;
5092  struct vf_data_storage *vf_data;
5093  int i, j;
5094 
5095  for (i = 0; i < adapter->vfs_allocated_count; i++) {
5096  u32 vmolr = rd32(E1000_VMOLR(i));
5097  vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5098 
5099  vf_data = &adapter->vf_data[i];
5100 
5101  if ((vf_data->num_vf_mc_hashes > 30) ||
5102  (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5103  vmolr |= E1000_VMOLR_MPME;
5104  } else if (vf_data->num_vf_mc_hashes) {
5105  vmolr |= E1000_VMOLR_ROMPE;
5106  for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5107  igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5108  }
5109  wr32(E1000_VMOLR(i), vmolr);
5110  }
5111 }
5112 
5113 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5114 {
5115  struct e1000_hw *hw = &adapter->hw;
5116  u32 pool_mask, reg, vid;
5117  int i;
5118 
5119  pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5120 
5121  /* Find the vlan filter for this id */
5122  for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5123  reg = rd32(E1000_VLVF(i));
5124 
5125  /* remove the vf from the pool */
5126  reg &= ~pool_mask;
5127 
5128  /* if pool is empty then remove entry from vfta */
5129  if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5130  (reg & E1000_VLVF_VLANID_ENABLE)) {
5131  reg = 0;
5132  vid = reg & E1000_VLVF_VLANID_MASK;
5133  igb_vfta_set(hw, vid, false);
5134  }
5135 
5136  wr32(E1000_VLVF(i), reg);
5137  }
5138 
5139  adapter->vf_data[vf].vlans_enabled = 0;
5140 }
5141 
5142 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5143 {
5144  struct e1000_hw *hw = &adapter->hw;
5145  u32 reg, i;
5146 
5147  /* The vlvf table only exists on 82576 hardware and newer */
5148  if (hw->mac.type < e1000_82576)
5149  return -1;
5150 
5151  /* we only need to do this if VMDq is enabled */
5152  if (!adapter->vfs_allocated_count)
5153  return -1;
5154 
5155  /* Find the vlan filter for this id */
5156  for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5157  reg = rd32(E1000_VLVF(i));
5158  if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5159  vid == (reg & E1000_VLVF_VLANID_MASK))
5160  break;
5161  }
5162 
5163  if (add) {
5164  if (i == E1000_VLVF_ARRAY_SIZE) {
5165  /* Did not find a matching VLAN ID entry that was
5166  * enabled. Search for a free filter entry, i.e.
5167  * one without the enable bit set
5168  */
5169  for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5170  reg = rd32(E1000_VLVF(i));
5171  if (!(reg & E1000_VLVF_VLANID_ENABLE))
5172  break;
5173  }
5174  }
5175  if (i < E1000_VLVF_ARRAY_SIZE) {
5176  /* Found an enabled/available entry */
5177  reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5178 
5179  /* if !enabled we need to set this up in vfta */
5180  if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5181  /* add VID to filter table */
5182  igb_vfta_set(hw, vid, true);
5183  reg |= E1000_VLVF_VLANID_ENABLE;
5184  }
5185  reg &= ~E1000_VLVF_VLANID_MASK;
5186  reg |= vid;
5187  wr32(E1000_VLVF(i), reg);
5188 
5189  /* do not modify RLPML for PF devices */
5190  if (vf >= adapter->vfs_allocated_count)
5191  return 0;
5192 
5193  if (!adapter->vf_data[vf].vlans_enabled) {
5194  u32 size;
5195  reg = rd32(E1000_VMOLR(vf));
5196  size = reg & E1000_VMOLR_RLPML_MASK;
5197  size += 4;
5198  reg &= ~E1000_VMOLR_RLPML_MASK;
5199  reg |= size;
5200  wr32(E1000_VMOLR(vf), reg);
5201  }
5202 
5203  adapter->vf_data[vf].vlans_enabled++;
5204  }
5205  } else {
5206  if (i < E1000_VLVF_ARRAY_SIZE) {
5207  /* remove vf from the pool */
5208  reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5209  /* if pool is empty then remove entry from vfta */
5210  if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5211  reg = 0;
5212  igb_vfta_set(hw, vid, false);
5213  }
5214  wr32(E1000_VLVF(i), reg);
5215 
5216  /* do not modify RLPML for PF devices */
5217  if (vf >= adapter->vfs_allocated_count)
5218  return 0;
5219 
5220  adapter->vf_data[vf].vlans_enabled--;
5221  if (!adapter->vf_data[vf].vlans_enabled) {
5222  u32 size;
5223  reg = rd32(E1000_VMOLR(vf));
5224  size = reg & E1000_VMOLR_RLPML_MASK;
5225  size -= 4;
5226  reg &= ~E1000_VMOLR_RLPML_MASK;
5227  reg |= size;
5228  wr32(E1000_VMOLR(vf), reg);
5229  }
5230  }
5231  }
5232  return 0;
5233 }
5234 
5235 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5236 {
5237  struct e1000_hw *hw = &adapter->hw;
5238 
5239  if (vid)
5241  else
5242  wr32(E1000_VMVIR(vf), 0);
5243 }
5244 
5245 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5246  int vf, u16 vlan, u8 qos)
5247 {
5248  int err = 0;
5249  struct igb_adapter *adapter = netdev_priv(netdev);
5250 
5251  if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5252  return -EINVAL;
5253  if (vlan || qos) {
5254  err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5255  if (err)
5256  goto out;
5257  igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5258  igb_set_vmolr(adapter, vf, !vlan);
5259  adapter->vf_data[vf].pf_vlan = vlan;
5260  adapter->vf_data[vf].pf_qos = qos;
5261  dev_info(&adapter->pdev->dev,
5262  "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5263  if (test_bit(__IGB_DOWN, &adapter->state)) {
5264  dev_warn(&adapter->pdev->dev,
5265  "The VF VLAN has been set,"
5266  " but the PF device is not up.\n");
5267  dev_warn(&adapter->pdev->dev,
5268  "Bring the PF device up before"
5269  " attempting to use the VF device.\n");
5270  }
5271  } else {
5272  igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5273  false, vf);
5274  igb_set_vmvir(adapter, vlan, vf);
5275  igb_set_vmolr(adapter, vf, true);
5276  adapter->vf_data[vf].pf_vlan = 0;
5277  adapter->vf_data[vf].pf_qos = 0;
5278  }
5279 out:
5280  return err;
5281 }
5282 
5283 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5284 {
5285  int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5286  int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5287 
5288  return igb_vlvf_set(adapter, vid, add, vf);
5289 }
5290 
5291 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5292 {
5293  /* clear flags - except flag that indicates PF has set the MAC */
5294  adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5295  adapter->vf_data[vf].last_nack = jiffies;
5296 
5297  /* reset offloads to defaults */
5298  igb_set_vmolr(adapter, vf, true);
5299 
5300  /* reset vlans for device */
5301  igb_clear_vf_vfta(adapter, vf);
5302  if (adapter->vf_data[vf].pf_vlan)
5303  igb_ndo_set_vf_vlan(adapter->netdev, vf,
5304  adapter->vf_data[vf].pf_vlan,
5305  adapter->vf_data[vf].pf_qos);
5306  else
5307  igb_clear_vf_vfta(adapter, vf);
5308 
5309  /* reset multicast table array for vf */
5310  adapter->vf_data[vf].num_vf_mc_hashes = 0;
5311 
5312  /* Flush and reset the mta with the new values */
5313  igb_set_rx_mode(adapter->netdev);
5314 }
5315 
5316 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5317 {
5318  unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5319 
5320  /* generate a new mac address as we were hotplug removed/added */
5321  if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5322  eth_random_addr(vf_mac);
5323 
5324  /* process remaining reset events */
5325  igb_vf_reset(adapter, vf);
5326 }
5327 
5328 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5329 {
5330  struct e1000_hw *hw = &adapter->hw;
5331  unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5332  int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5333  u32 reg, msgbuf[3];
5334  u8 *addr = (u8 *)(&msgbuf[1]);
5335 
5336  /* process all the same items cleared in a function level reset */
5337  igb_vf_reset(adapter, vf);
5338 
5339  /* set vf mac address */
5340  igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5341 
5342  /* enable transmit and receive for vf */
5343  reg = rd32(E1000_VFTE);
5344  wr32(E1000_VFTE, reg | (1 << vf));
5345  reg = rd32(E1000_VFRE);
5346  wr32(E1000_VFRE, reg | (1 << vf));
5347 
5348  adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5349 
5350  /* reply to reset with ack and vf mac address */
5351  msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5352  memcpy(addr, vf_mac, 6);
5353  igb_write_mbx(hw, msgbuf, 3, vf);
5354 }
5355 
5356 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5357 {
5358  /*
5359  * The VF MAC Address is stored in a packed array of bytes
5360  * starting at the second 32 bit word of the msg array
5361  */
5362  unsigned char *addr = (char *)&msg[1];
5363  int err = -1;
5364 
5365  if (is_valid_ether_addr(addr))
5366  err = igb_set_vf_mac(adapter, vf, addr);
5367 
5368  return err;
5369 }
5370 
5371 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5372 {
5373  struct e1000_hw *hw = &adapter->hw;
5374  struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5375  u32 msg = E1000_VT_MSGTYPE_NACK;
5376 
5377  /* if device isn't clear to send it shouldn't be reading either */
5378  if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5379  time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5380  igb_write_mbx(hw, &msg, 1, vf);
5381  vf_data->last_nack = jiffies;
5382  }
5383 }
5384 
5385 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5386 {
5387  struct pci_dev *pdev = adapter->pdev;
5388  u32 msgbuf[E1000_VFMAILBOX_SIZE];
5389  struct e1000_hw *hw = &adapter->hw;
5390  struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5391  s32 retval;
5392 
5393  retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5394 
5395  if (retval) {
5396  /* if receive failed revoke VF CTS stats and restart init */
5397  dev_err(&pdev->dev, "Error receiving message from VF\n");
5398  vf_data->flags &= ~IGB_VF_FLAG_CTS;
5399  if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5400  return;
5401  goto out;
5402  }
5403 
5404  /* this is a message we already processed, do nothing */
5405  if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5406  return;
5407 
5408  /*
5409  * until the vf completes a reset it should not be
5410  * allowed to start any configuration.
5411  */
5412 
5413  if (msgbuf[0] == E1000_VF_RESET) {
5414  igb_vf_reset_msg(adapter, vf);
5415  return;
5416  }
5417 
5418  if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5419  if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5420  return;
5421  retval = -1;
5422  goto out;
5423  }
5424 
5425  switch ((msgbuf[0] & 0xFFFF)) {
5426  case E1000_VF_SET_MAC_ADDR:
5427  retval = -EINVAL;
5428  if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5429  retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5430  else
5431  dev_warn(&pdev->dev,
5432  "VF %d attempted to override administratively "
5433  "set MAC address\nReload the VF driver to "
5434  "resume operations\n", vf);
5435  break;
5436  case E1000_VF_SET_PROMISC:
5437  retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5438  break;
5440  retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5441  break;
5442  case E1000_VF_SET_LPE:
5443  retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5444  break;
5445  case E1000_VF_SET_VLAN:
5446  retval = -1;
5447  if (vf_data->pf_vlan)
5448  dev_warn(&pdev->dev,
5449  "VF %d attempted to override administratively "
5450  "set VLAN tag\nReload the VF driver to "
5451  "resume operations\n", vf);
5452  else
5453  retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5454  break;
5455  default:
5456  dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5457  retval = -1;
5458  break;
5459  }
5460 
5461  msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5462 out:
5463  /* notify the VF of the results of what it sent us */
5464  if (retval)
5465  msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5466  else
5467  msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5468 
5469  igb_write_mbx(hw, msgbuf, 1, vf);
5470 }
5471 
5472 static void igb_msg_task(struct igb_adapter *adapter)
5473 {
5474  struct e1000_hw *hw = &adapter->hw;
5475  u32 vf;
5476 
5477  for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5478  /* process any reset requests */
5479  if (!igb_check_for_rst(hw, vf))
5480  igb_vf_reset_event(adapter, vf);
5481 
5482  /* process any messages pending */
5483  if (!igb_check_for_msg(hw, vf))
5484  igb_rcv_msg_from_vf(adapter, vf);
5485 
5486  /* process any acks */
5487  if (!igb_check_for_ack(hw, vf))
5488  igb_rcv_ack_from_vf(adapter, vf);
5489  }
5490 }
5491 
5502 static void igb_set_uta(struct igb_adapter *adapter)
5503 {
5504  struct e1000_hw *hw = &adapter->hw;
5505  int i;
5506 
5507  /* The UTA table only exists on 82576 hardware and newer */
5508  if (hw->mac.type < e1000_82576)
5509  return;
5510 
5511  /* we only need to do this if VMDq is enabled */
5512  if (!adapter->vfs_allocated_count)
5513  return;
5514 
5515  for (i = 0; i < hw->mac.uta_reg_count; i++)
5516  array_wr32(E1000_UTA, i, ~0);
5517 }
5518 
5524 static irqreturn_t igb_intr_msi(int irq, void *data)
5525 {
5526  struct igb_adapter *adapter = data;
5527  struct igb_q_vector *q_vector = adapter->q_vector[0];
5528  struct e1000_hw *hw = &adapter->hw;
5529  /* read ICR disables interrupts using IAM */
5530  u32 icr = rd32(E1000_ICR);
5531 
5532  igb_write_itr(q_vector);
5533 
5534  if (icr & E1000_ICR_DRSTA)
5535  schedule_work(&adapter->reset_task);
5536 
5537  if (icr & E1000_ICR_DOUTSYNC) {
5538  /* HW is reporting DMA is out of sync */
5539  adapter->stats.doosync++;
5540  }
5541 
5542  if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5543  hw->mac.get_link_status = 1;
5544  if (!test_bit(__IGB_DOWN, &adapter->state))
5545  mod_timer(&adapter->watchdog_timer, jiffies + 1);
5546  }
5547 
5548 #ifdef CONFIG_IGB_PTP
5549  if (icr & E1000_ICR_TS) {
5550  u32 tsicr = rd32(E1000_TSICR);
5551 
5552  if (tsicr & E1000_TSICR_TXTS) {
5553  /* acknowledge the interrupt */
5554  wr32(E1000_TSICR, E1000_TSICR_TXTS);
5555  /* retrieve hardware timestamp */
5556  schedule_work(&adapter->ptp_tx_work);
5557  }
5558  }
5559 #endif /* CONFIG_IGB_PTP */
5560 
5561  napi_schedule(&q_vector->napi);
5562 
5563  return IRQ_HANDLED;
5564 }
5565 
5571 static irqreturn_t igb_intr(int irq, void *data)
5572 {
5573  struct igb_adapter *adapter = data;
5574  struct igb_q_vector *q_vector = adapter->q_vector[0];
5575  struct e1000_hw *hw = &adapter->hw;
5576  /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5577  * need for the IMC write */
5578  u32 icr = rd32(E1000_ICR);
5579 
5580  /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5581  * not set, then the adapter didn't send an interrupt */
5582  if (!(icr & E1000_ICR_INT_ASSERTED))
5583  return IRQ_NONE;
5584 
5585  igb_write_itr(q_vector);
5586 
5587  if (icr & E1000_ICR_DRSTA)
5588  schedule_work(&adapter->reset_task);
5589 
5590  if (icr & E1000_ICR_DOUTSYNC) {
5591  /* HW is reporting DMA is out of sync */
5592  adapter->stats.doosync++;
5593  }
5594 
5595  if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5596  hw->mac.get_link_status = 1;
5597  /* guard against interrupt when we're going down */
5598  if (!test_bit(__IGB_DOWN, &adapter->state))
5599  mod_timer(&adapter->watchdog_timer, jiffies + 1);
5600  }
5601 
5602 #ifdef CONFIG_IGB_PTP
5603  if (icr & E1000_ICR_TS) {
5604  u32 tsicr = rd32(E1000_TSICR);
5605 
5606  if (tsicr & E1000_TSICR_TXTS) {
5607  /* acknowledge the interrupt */
5608  wr32(E1000_TSICR, E1000_TSICR_TXTS);
5609  /* retrieve hardware timestamp */
5610  schedule_work(&adapter->ptp_tx_work);
5611  }
5612  }
5613 #endif /* CONFIG_IGB_PTP */
5614 
5615  napi_schedule(&q_vector->napi);
5616 
5617  return IRQ_HANDLED;
5618 }
5619 
5620 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5621 {
5622  struct igb_adapter *adapter = q_vector->adapter;
5623  struct e1000_hw *hw = &adapter->hw;
5624 
5625  if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5626  (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5627  if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5628  igb_set_itr(q_vector);
5629  else
5630  igb_update_ring_itr(q_vector);
5631  }
5632 
5633  if (!test_bit(__IGB_DOWN, &adapter->state)) {
5634  if (adapter->msix_entries)
5635  wr32(E1000_EIMS, q_vector->eims_value);
5636  else
5637  igb_irq_enable(adapter);
5638  }
5639 }
5640 
5646 static int igb_poll(struct napi_struct *napi, int budget)
5647 {
5648  struct igb_q_vector *q_vector = container_of(napi,
5649  struct igb_q_vector,
5650  napi);
5651  bool clean_complete = true;
5652 
5653 #ifdef CONFIG_IGB_DCA
5654  if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5655  igb_update_dca(q_vector);
5656 #endif
5657  if (q_vector->tx.ring)
5658  clean_complete = igb_clean_tx_irq(q_vector);
5659 
5660  if (q_vector->rx.ring)
5661  clean_complete &= igb_clean_rx_irq(q_vector, budget);
5662 
5663  /* If all work not completed, return budget and keep polling */
5664  if (!clean_complete)
5665  return budget;
5666 
5667  /* If not enough Rx work done, exit the polling mode */
5668  napi_complete(napi);
5669  igb_ring_irq_enable(q_vector);
5670 
5671  return 0;
5672 }
5673 
5680 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5681 {
5682  struct igb_adapter *adapter = q_vector->adapter;
5683  struct igb_ring *tx_ring = q_vector->tx.ring;
5684  struct igb_tx_buffer *tx_buffer;
5685  union e1000_adv_tx_desc *tx_desc;
5686  unsigned int total_bytes = 0, total_packets = 0;
5687  unsigned int budget = q_vector->tx.work_limit;
5688  unsigned int i = tx_ring->next_to_clean;
5689 
5690  if (test_bit(__IGB_DOWN, &adapter->state))
5691  return true;
5692 
5693  tx_buffer = &tx_ring->tx_buffer_info[i];
5694  tx_desc = IGB_TX_DESC(tx_ring, i);
5695  i -= tx_ring->count;
5696 
5697  do {
5698  union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5699 
5700  /* if next_to_watch is not set then there is no work pending */
5701  if (!eop_desc)
5702  break;
5703 
5704  /* prevent any other reads prior to eop_desc */
5705  rmb();
5706 
5707  /* if DD is not set pending work has not been completed */
5708  if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5709  break;
5710 
5711  /* clear next_to_watch to prevent false hangs */
5712  tx_buffer->next_to_watch = NULL;
5713 
5714  /* update the statistics for this packet */
5715  total_bytes += tx_buffer->bytecount;
5716  total_packets += tx_buffer->gso_segs;
5717 
5718  /* free the skb */
5719  dev_kfree_skb_any(tx_buffer->skb);
5720 
5721  /* unmap skb header data */
5722  dma_unmap_single(tx_ring->dev,
5723  dma_unmap_addr(tx_buffer, dma),
5724  dma_unmap_len(tx_buffer, len),
5725  DMA_TO_DEVICE);
5726 
5727  /* clear tx_buffer data */
5728  tx_buffer->skb = NULL;
5729  dma_unmap_len_set(tx_buffer, len, 0);
5730 
5731  /* clear last DMA location and unmap remaining buffers */
5732  while (tx_desc != eop_desc) {
5733  tx_buffer++;
5734  tx_desc++;
5735  i++;
5736  if (unlikely(!i)) {
5737  i -= tx_ring->count;
5738  tx_buffer = tx_ring->tx_buffer_info;
5739  tx_desc = IGB_TX_DESC(tx_ring, 0);
5740  }
5741 
5742  /* unmap any remaining paged data */
5743  if (dma_unmap_len(tx_buffer, len)) {
5744  dma_unmap_page(tx_ring->dev,
5745  dma_unmap_addr(tx_buffer, dma),
5746  dma_unmap_len(tx_buffer, len),
5747  DMA_TO_DEVICE);
5748  dma_unmap_len_set(tx_buffer, len, 0);
5749  }
5750  }
5751 
5752  /* move us one more past the eop_desc for start of next pkt */
5753  tx_buffer++;
5754  tx_desc++;
5755  i++;
5756  if (unlikely(!i)) {
5757  i -= tx_ring->count;
5758  tx_buffer = tx_ring->tx_buffer_info;
5759  tx_desc = IGB_TX_DESC(tx_ring, 0);
5760  }
5761 
5762  /* issue prefetch for next Tx descriptor */
5763  prefetch(tx_desc);
5764 
5765  /* update budget accounting */
5766  budget--;
5767  } while (likely(budget));
5768 
5769  netdev_tx_completed_queue(txring_txq(tx_ring),
5770  total_packets, total_bytes);
5771  i += tx_ring->count;
5772  tx_ring->next_to_clean = i;
5773  u64_stats_update_begin(&tx_ring->tx_syncp);
5774  tx_ring->tx_stats.bytes += total_bytes;
5775  tx_ring->tx_stats.packets += total_packets;
5776  u64_stats_update_end(&tx_ring->tx_syncp);
5777  q_vector->tx.total_bytes += total_bytes;
5778  q_vector->tx.total_packets += total_packets;
5779 
5780  if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
5781  struct e1000_hw *hw = &adapter->hw;
5782 
5783  /* Detect a transmit hang in hardware, this serializes the
5784  * check with the clearing of time_stamp and movement of i */
5786  if (tx_buffer->next_to_watch &&
5787  time_after(jiffies, tx_buffer->time_stamp +
5788  (adapter->tx_timeout_factor * HZ)) &&
5790 
5791  /* detected Tx unit hang */
5792  dev_err(tx_ring->dev,
5793  "Detected Tx Unit Hang\n"
5794  " Tx Queue <%d>\n"
5795  " TDH <%x>\n"
5796  " TDT <%x>\n"
5797  " next_to_use <%x>\n"
5798  " next_to_clean <%x>\n"
5799  "buffer_info[next_to_clean]\n"
5800  " time_stamp <%lx>\n"
5801  " next_to_watch <%p>\n"
5802  " jiffies <%lx>\n"
5803  " desc.status <%x>\n",
5804  tx_ring->queue_index,
5805  rd32(E1000_TDH(tx_ring->reg_idx)),
5806  readl(tx_ring->tail),
5807  tx_ring->next_to_use,
5808  tx_ring->next_to_clean,
5809  tx_buffer->time_stamp,
5810  tx_buffer->next_to_watch,
5811  jiffies,
5812  tx_buffer->next_to_watch->wb.status);
5813  netif_stop_subqueue(tx_ring->netdev,
5814  tx_ring->queue_index);
5815 
5816  /* we are about to reset, no point in enabling stuff */
5817  return true;
5818  }
5819  }
5820 
5821  if (unlikely(total_packets &&
5822  netif_carrier_ok(tx_ring->netdev) &&
5823  igb_desc_unused(tx_ring) >= IGB_TX_QUEUE_WAKE)) {
5824  /* Make sure that anybody stopping the queue after this
5825  * sees the new next_to_clean.
5826  */
5827  smp_mb();
5828  if (__netif_subqueue_stopped(tx_ring->netdev,
5829  tx_ring->queue_index) &&
5830  !(test_bit(__IGB_DOWN, &adapter->state))) {
5831  netif_wake_subqueue(tx_ring->netdev,
5832  tx_ring->queue_index);
5833 
5834  u64_stats_update_begin(&tx_ring->tx_syncp);
5835  tx_ring->tx_stats.restart_queue++;
5836  u64_stats_update_end(&tx_ring->tx_syncp);
5837  }
5838  }
5839 
5840  return !!budget;
5841 }
5842 
5843 static inline void igb_rx_checksum(struct igb_ring *ring,
5844  union e1000_adv_rx_desc *rx_desc,
5845  struct sk_buff *skb)
5846 {
5847  skb_checksum_none_assert(skb);
5848 
5849  /* Ignore Checksum bit is set */
5850  if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
5851  return;
5852 
5853  /* Rx checksum disabled via ethtool */
5854  if (!(ring->netdev->features & NETIF_F_RXCSUM))
5855  return;
5856 
5857  /* TCP/UDP checksum error bit is set */
5858  if (igb_test_staterr(rx_desc,
5861  /*
5862  * work around errata with sctp packets where the TCPE aka
5863  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
5864  * packets, (aka let the stack check the crc32c)
5865  */
5866  if (!((skb->len == 60) &&
5868  u64_stats_update_begin(&ring->rx_syncp);
5869  ring->rx_stats.csum_err++;
5870  u64_stats_update_end(&ring->rx_syncp);
5871  }
5872  /* let the stack verify checksum errors */
5873  return;
5874  }
5875  /* It must be a TCP or UDP packet with a valid checksum */
5876  if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
5879 
5880  dev_dbg(ring->dev, "cksum success: bits %08X\n",
5881  le32_to_cpu(rx_desc->wb.upper.status_error));
5882 }
5883 
5884 static inline void igb_rx_hash(struct igb_ring *ring,
5885  union e1000_adv_rx_desc *rx_desc,
5886  struct sk_buff *skb)
5887 {
5888  if (ring->netdev->features & NETIF_F_RXHASH)
5889  skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
5890 }
5891 
5892 static void igb_rx_vlan(struct igb_ring *ring,
5893  union e1000_adv_rx_desc *rx_desc,
5894  struct sk_buff *skb)
5895 {
5896  if (igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
5897  u16 vid;
5898  if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
5900  vid = be16_to_cpu(rx_desc->wb.upper.vlan);
5901  else
5902  vid = le16_to_cpu(rx_desc->wb.upper.vlan);
5903 
5904  __vlan_hwaccel_put_tag(skb, vid);
5905  }
5906 }
5907 
5908 static inline u16 igb_get_hlen(union e1000_adv_rx_desc *rx_desc)
5909 {
5910  /* HW will not DMA in data larger than the given buffer, even if it
5911  * parses the (NFS, of course) header to be larger. In that case, it
5912  * fills the header buffer and spills the rest into the page.
5913  */
5914  u16 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hdr_info) &
5916  if (hlen > IGB_RX_HDR_LEN)
5917  hlen = IGB_RX_HDR_LEN;
5918  return hlen;
5919 }
5920 
5921 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, int budget)
5922 {
5923  struct igb_ring *rx_ring = q_vector->rx.ring;
5924  union e1000_adv_rx_desc *rx_desc;
5925  const int current_node = numa_node_id();
5926  unsigned int total_bytes = 0, total_packets = 0;
5927  u16 cleaned_count = igb_desc_unused(rx_ring);
5928  u16 i = rx_ring->next_to_clean;
5929 
5930  rx_desc = IGB_RX_DESC(rx_ring, i);
5931 
5932  while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
5933  struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5934  struct sk_buff *skb = buffer_info->skb;
5935  union e1000_adv_rx_desc *next_rxd;
5936 
5937  buffer_info->skb = NULL;
5938  prefetch(skb->data);
5939 
5940  i++;
5941  if (i == rx_ring->count)
5942  i = 0;
5943 
5944  next_rxd = IGB_RX_DESC(rx_ring, i);
5945  prefetch(next_rxd);
5946 
5947  /*
5948  * This memory barrier is needed to keep us from reading
5949  * any other fields out of the rx_desc until we know the
5950  * RXD_STAT_DD bit is set
5951  */
5952  rmb();
5953 
5954  if (!skb_is_nonlinear(skb)) {
5955  __skb_put(skb, igb_get_hlen(rx_desc));
5956  dma_unmap_single(rx_ring->dev, buffer_info->dma,
5958  DMA_FROM_DEVICE);
5959  buffer_info->dma = 0;
5960  }
5961 
5962  if (rx_desc->wb.upper.length) {
5963  u16 length = le16_to_cpu(rx_desc->wb.upper.length);
5964 
5965  skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
5966  buffer_info->page,
5967  buffer_info->page_offset,
5968  length);
5969 
5970  skb->len += length;
5971  skb->data_len += length;
5972  skb->truesize += PAGE_SIZE / 2;
5973 
5974  if ((page_count(buffer_info->page) != 1) ||
5975  (page_to_nid(buffer_info->page) != current_node))
5976  buffer_info->page = NULL;
5977  else
5978  get_page(buffer_info->page);
5979 
5980  dma_unmap_page(rx_ring->dev, buffer_info->page_dma,
5981  PAGE_SIZE / 2, DMA_FROM_DEVICE);
5982  buffer_info->page_dma = 0;
5983  }
5984 
5985  if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)) {
5986  struct igb_rx_buffer *next_buffer;
5987  next_buffer = &rx_ring->rx_buffer_info[i];
5988  buffer_info->skb = next_buffer->skb;
5989  buffer_info->dma = next_buffer->dma;
5990  next_buffer->skb = skb;
5991  next_buffer->dma = 0;
5992  goto next_desc;
5993  }
5994 
5995  if (unlikely((igb_test_staterr(rx_desc,
5997  && !(rx_ring->netdev->features & NETIF_F_RXALL))) {
5998  dev_kfree_skb_any(skb);
5999  goto next_desc;
6000  }
6001 
6002 #ifdef CONFIG_IGB_PTP
6003  igb_ptp_rx_hwtstamp(q_vector, rx_desc, skb);
6004 #endif /* CONFIG_IGB_PTP */
6005  igb_rx_hash(rx_ring, rx_desc, skb);
6006  igb_rx_checksum(rx_ring, rx_desc, skb);
6007  igb_rx_vlan(rx_ring, rx_desc, skb);
6008 
6009  total_bytes += skb->len;
6010  total_packets++;
6011 
6012  skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6013 
6014  napi_gro_receive(&q_vector->napi, skb);
6015 
6016  budget--;
6017 next_desc:
6018  if (!budget)
6019  break;
6020 
6021  cleaned_count++;
6022  /* return some buffers to hardware, one at a time is too slow */
6023  if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6024  igb_alloc_rx_buffers(rx_ring, cleaned_count);
6025  cleaned_count = 0;
6026  }
6027 
6028  /* use prefetched values */
6029  rx_desc = next_rxd;
6030  }
6031 
6032  rx_ring->next_to_clean = i;
6033  u64_stats_update_begin(&rx_ring->rx_syncp);
6034  rx_ring->rx_stats.packets += total_packets;
6035  rx_ring->rx_stats.bytes += total_bytes;
6036  u64_stats_update_end(&rx_ring->rx_syncp);
6037  q_vector->rx.total_packets += total_packets;
6038  q_vector->rx.total_bytes += total_bytes;
6039 
6040  if (cleaned_count)
6041  igb_alloc_rx_buffers(rx_ring, cleaned_count);
6042 
6043  return !!budget;
6044 }
6045 
6046 static bool igb_alloc_mapped_skb(struct igb_ring *rx_ring,
6047  struct igb_rx_buffer *bi)
6048 {
6049  struct sk_buff *skb = bi->skb;
6050  dma_addr_t dma = bi->dma;
6051 
6052  if (dma)
6053  return true;
6054 
6055  if (likely(!skb)) {
6056  skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6057  IGB_RX_HDR_LEN);
6058  bi->skb = skb;
6059  if (!skb) {
6060  rx_ring->rx_stats.alloc_failed++;
6061  return false;
6062  }
6063 
6064  /* initialize skb for ring */
6065  skb_record_rx_queue(skb, rx_ring->queue_index);
6066  }
6067 
6068  dma = dma_map_single(rx_ring->dev, skb->data,
6070 
6071  if (dma_mapping_error(rx_ring->dev, dma)) {
6072  rx_ring->rx_stats.alloc_failed++;
6073  return false;
6074  }
6075 
6076  bi->dma = dma;
6077  return true;
6078 }
6079 
6080 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6081  struct igb_rx_buffer *bi)
6082 {
6083  struct page *page = bi->page;
6084  dma_addr_t page_dma = bi->page_dma;
6085  unsigned int page_offset = bi->page_offset ^ (PAGE_SIZE / 2);
6086 
6087  if (page_dma)
6088  return true;
6089 
6090  if (!page) {
6091  page = __skb_alloc_page(GFP_ATOMIC, bi->skb);
6092  bi->page = page;
6093  if (unlikely(!page)) {
6094  rx_ring->rx_stats.alloc_failed++;
6095  return false;
6096  }
6097  }
6098 
6099  page_dma = dma_map_page(rx_ring->dev, page,
6100  page_offset, PAGE_SIZE / 2,
6101  DMA_FROM_DEVICE);
6102 
6103  if (dma_mapping_error(rx_ring->dev, page_dma)) {
6104  rx_ring->rx_stats.alloc_failed++;
6105  return false;
6106  }
6107 
6108  bi->page_dma = page_dma;
6109  bi->page_offset = page_offset;
6110  return true;
6111 }
6112 
6117 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6118 {
6119  union e1000_adv_rx_desc *rx_desc;
6120  struct igb_rx_buffer *bi;
6121  u16 i = rx_ring->next_to_use;
6122 
6123  rx_desc = IGB_RX_DESC(rx_ring, i);
6124  bi = &rx_ring->rx_buffer_info[i];
6125  i -= rx_ring->count;
6126 
6127  while (cleaned_count--) {
6128  if (!igb_alloc_mapped_skb(rx_ring, bi))
6129  break;
6130 
6131  /* Refresh the desc even if buffer_addrs didn't change
6132  * because each write-back erases this info. */
6133  rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
6134 
6135  if (!igb_alloc_mapped_page(rx_ring, bi))
6136  break;
6137 
6138  rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
6139 
6140  rx_desc++;
6141  bi++;
6142  i++;
6143  if (unlikely(!i)) {
6144  rx_desc = IGB_RX_DESC(rx_ring, 0);
6145  bi = rx_ring->rx_buffer_info;
6146  i -= rx_ring->count;
6147  }
6148 
6149  /* clear the hdr_addr for the next_to_use descriptor */
6150  rx_desc->read.hdr_addr = 0;
6151  }
6152 
6153  i += rx_ring->count;
6154 
6155  if (rx_ring->next_to_use != i) {
6156  rx_ring->next_to_use = i;
6157 
6158  /* Force memory writes to complete before letting h/w
6159  * know there are new descriptors to fetch. (Only
6160  * applicable for weak-ordered memory model archs,
6161  * such as IA-64). */
6162  wmb();
6163  writel(i, rx_ring->tail);
6164  }
6165 }
6166 
6173 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6174 {
6175  struct igb_adapter *adapter = netdev_priv(netdev);
6176  struct mii_ioctl_data *data = if_mii(ifr);
6177 
6178  if (adapter->hw.phy.media_type != e1000_media_type_copper)
6179  return -EOPNOTSUPP;
6180 
6181  switch (cmd) {
6182  case SIOCGMIIPHY:
6183  data->phy_id = adapter->hw.phy.addr;
6184  break;
6185  case SIOCGMIIREG:
6186  if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6187  &data->val_out))
6188  return -EIO;
6189  break;
6190  case SIOCSMIIREG:
6191  default:
6192  return -EOPNOTSUPP;
6193  }
6194  return 0;
6195 }
6196 
6203 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6204 {
6205  switch (cmd) {
6206  case SIOCGMIIPHY:
6207  case SIOCGMIIREG:
6208  case SIOCSMIIREG:
6209  return igb_mii_ioctl(netdev, ifr, cmd);
6210 #ifdef CONFIG_IGB_PTP
6211  case SIOCSHWTSTAMP:
6212  return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6213 #endif /* CONFIG_IGB_PTP */
6214  default:
6215  return -EOPNOTSUPP;
6216  }
6217 }
6218 
6220 {
6221  struct igb_adapter *adapter = hw->back;
6222 
6223  if (pcie_capability_read_word(adapter->pdev, reg, value))
6224  return -E1000_ERR_CONFIG;
6225 
6226  return 0;
6227 }
6228 
6230 {
6231  struct igb_adapter *adapter = hw->back;
6232 
6233  if (pcie_capability_write_word(adapter->pdev, reg, *value))
6234  return -E1000_ERR_CONFIG;
6235 
6236  return 0;
6237 }
6238 
6239 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6240 {
6241  struct igb_adapter *adapter = netdev_priv(netdev);
6242  struct e1000_hw *hw = &adapter->hw;
6243  u32 ctrl, rctl;
6244  bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6245 
6246  if (enable) {
6247  /* enable VLAN tag insert/strip */
6248  ctrl = rd32(E1000_CTRL);
6249  ctrl |= E1000_CTRL_VME;
6250  wr32(E1000_CTRL, ctrl);
6251 
6252  /* Disable CFI check */
6253  rctl = rd32(E1000_RCTL);
6254  rctl &= ~E1000_RCTL_CFIEN;
6255  wr32(E1000_RCTL, rctl);
6256  } else {
6257  /* disable VLAN tag insert/strip */
6258  ctrl = rd32(E1000_CTRL);
6259  ctrl &= ~E1000_CTRL_VME;
6260  wr32(E1000_CTRL, ctrl);
6261  }
6262 
6263  igb_rlpml_set(adapter);
6264 }
6265 
6266 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6267 {
6268  struct igb_adapter *adapter = netdev_priv(netdev);
6269  struct e1000_hw *hw = &adapter->hw;
6270  int pf_id = adapter->vfs_allocated_count;
6271 
6272  /* attempt to add filter to vlvf array */
6273  igb_vlvf_set(adapter, vid, true, pf_id);
6274 
6275  /* add the filter since PF can receive vlans w/o entry in vlvf */
6276  igb_vfta_set(hw, vid, true);
6277 
6278  set_bit(vid, adapter->active_vlans);
6279 
6280  return 0;
6281 }
6282 
6283 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6284 {
6285  struct igb_adapter *adapter = netdev_priv(netdev);
6286  struct e1000_hw *hw = &adapter->hw;
6287  int pf_id = adapter->vfs_allocated_count;
6288  s32 err;
6289 
6290  /* remove vlan from VLVF table array */
6291  err = igb_vlvf_set(adapter, vid, false, pf_id);
6292 
6293  /* if vid was not present in VLVF just remove it from table */
6294  if (err)
6295  igb_vfta_set(hw, vid, false);
6296 
6297  clear_bit(vid, adapter->active_vlans);
6298 
6299  return 0;
6300 }
6301 
6302 static void igb_restore_vlan(struct igb_adapter *adapter)
6303 {
6304  u16 vid;
6305 
6306  igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6307 
6308  for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
6309  igb_vlan_rx_add_vid(adapter->netdev, vid);
6310 }
6311 
6312 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
6313 {
6314  struct pci_dev *pdev = adapter->pdev;
6315  struct e1000_mac_info *mac = &adapter->hw.mac;
6316 
6317  mac->autoneg = 0;
6318 
6319  /* Make sure dplx is at most 1 bit and lsb of speed is not set
6320  * for the switch() below to work */
6321  if ((spd & 1) || (dplx & ~1))
6322  goto err_inval;
6323 
6324  /* Fiber NIC's only allow 1000 Gbps Full duplex */
6325  if ((adapter->hw.phy.media_type == e1000_media_type_internal_serdes) &&
6326  spd != SPEED_1000 &&
6327  dplx != DUPLEX_FULL)
6328  goto err_inval;
6329 
6330  switch (spd + dplx) {
6331  case SPEED_10 + DUPLEX_HALF:
6333  break;
6334  case SPEED_10 + DUPLEX_FULL:
6336  break;
6337  case SPEED_100 + DUPLEX_HALF:
6339  break;
6340  case SPEED_100 + DUPLEX_FULL:
6342  break;
6343  case SPEED_1000 + DUPLEX_FULL:
6344  mac->autoneg = 1;
6345  adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6346  break;
6347  case SPEED_1000 + DUPLEX_HALF: /* not supported */
6348  default:
6349  goto err_inval;
6350  }
6351 
6352  /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6353  adapter->hw.phy.mdix = AUTO_ALL_MODES;
6354 
6355  return 0;
6356 
6357 err_inval:
6358  dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6359  return -EINVAL;
6360 }
6361 
6362 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6363  bool runtime)
6364 {
6365  struct net_device *netdev = pci_get_drvdata(pdev);
6366  struct igb_adapter *adapter = netdev_priv(netdev);
6367  struct e1000_hw *hw = &adapter->hw;
6368  u32 ctrl, rctl, status;
6369  u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6370 #ifdef CONFIG_PM
6371  int retval = 0;
6372 #endif
6373 
6374  netif_device_detach(netdev);
6375 
6376  if (netif_running(netdev))
6377  __igb_close(netdev, true);
6378 
6379  igb_clear_interrupt_scheme(adapter);
6380 
6381 #ifdef CONFIG_PM
6382  retval = pci_save_state(pdev);
6383  if (retval)
6384  return retval;
6385 #endif
6386 
6387  status = rd32(E1000_STATUS);
6388  if (status & E1000_STATUS_LU)
6389  wufc &= ~E1000_WUFC_LNKC;
6390 
6391  if (wufc) {
6392  igb_setup_rctl(adapter);
6393  igb_set_rx_mode(netdev);
6394 
6395  /* turn on all-multi mode if wake on multicast is enabled */
6396  if (wufc & E1000_WUFC_MC) {
6397  rctl = rd32(E1000_RCTL);
6398  rctl |= E1000_RCTL_MPE;
6399  wr32(E1000_RCTL, rctl);
6400  }
6401 
6402  ctrl = rd32(E1000_CTRL);
6403  /* advertise wake from D3Cold */
6404  #define E1000_CTRL_ADVD3WUC 0x00100000
6405  /* phy power management enable */
6406  #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
6407  ctrl |= E1000_CTRL_ADVD3WUC;
6408  wr32(E1000_CTRL, ctrl);
6409 
6410  /* Allow time for pending master requests to run */
6412 
6414  wr32(E1000_WUFC, wufc);
6415  } else {
6416  wr32(E1000_WUC, 0);
6417  wr32(E1000_WUFC, 0);
6418  }
6419 
6420  *enable_wake = wufc || adapter->en_mng_pt;
6421  if (!*enable_wake)
6422  igb_power_down_link(adapter);
6423  else
6424  igb_power_up_link(adapter);
6425 
6426  /* Release control of h/w to f/w. If f/w is AMT enabled, this
6427  * would have already happened in close and is redundant. */
6428  igb_release_hw_control(adapter);
6429 
6430  pci_disable_device(pdev);
6431 
6432  return 0;
6433 }
6434 
6435 #ifdef CONFIG_PM
6436 #ifdef CONFIG_PM_SLEEP
6437 static int igb_suspend(struct device *dev)
6438 {
6439  int retval;
6440  bool wake;
6441  struct pci_dev *pdev = to_pci_dev(dev);
6442 
6443  retval = __igb_shutdown(pdev, &wake, 0);
6444  if (retval)
6445  return retval;
6446 
6447  if (wake) {
6448  pci_prepare_to_sleep(pdev);
6449  } else {
6450  pci_wake_from_d3(pdev, false);
6452  }
6453 
6454  return 0;
6455 }
6456 #endif /* CONFIG_PM_SLEEP */
6457 
6458 static int igb_resume(struct device *dev)
6459 {
6460  struct pci_dev *pdev = to_pci_dev(dev);
6461  struct net_device *netdev = pci_get_drvdata(pdev);
6462  struct igb_adapter *adapter = netdev_priv(netdev);
6463  struct e1000_hw *hw = &adapter->hw;
6464  u32 err;
6465 
6466  pci_set_power_state(pdev, PCI_D0);
6467  pci_restore_state(pdev);
6468  pci_save_state(pdev);
6469 
6470  err = pci_enable_device_mem(pdev);
6471  if (err) {
6472  dev_err(&pdev->dev,
6473  "igb: Cannot enable PCI device from suspend\n");
6474  return err;
6475  }
6476  pci_set_master(pdev);
6477 
6478  pci_enable_wake(pdev, PCI_D3hot, 0);
6479  pci_enable_wake(pdev, PCI_D3cold, 0);
6480 
6481  if (igb_init_interrupt_scheme(adapter)) {
6482  dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
6483  return -ENOMEM;
6484  }
6485 
6486  igb_reset(adapter);
6487 
6488  /* let the f/w know that the h/w is now under the control of the
6489  * driver. */
6490  igb_get_hw_control(adapter);
6491 
6492  wr32(E1000_WUS, ~0);
6493 
6494  if (netdev->flags & IFF_UP) {
6495  err = __igb_open(netdev, true);
6496  if (err)
6497  return err;
6498  }
6499 
6500  netif_device_attach(netdev);
6501  return 0;
6502 }
6503 
6504 #ifdef CONFIG_PM_RUNTIME
6505 static int igb_runtime_idle(struct device *dev)
6506 {
6507  struct pci_dev *pdev = to_pci_dev(dev);
6508  struct net_device *netdev = pci_get_drvdata(pdev);
6509  struct igb_adapter *adapter = netdev_priv(netdev);
6510 
6511  if (!igb_has_link(adapter))
6513 
6514  return -EBUSY;
6515 }
6516 
6517 static int igb_runtime_suspend(struct device *dev)
6518 {
6519  struct pci_dev *pdev = to_pci_dev(dev);
6520  int retval;
6521  bool wake;
6522 
6523  retval = __igb_shutdown(pdev, &wake, 1);
6524  if (retval)
6525  return retval;
6526 
6527  if (wake) {
6528  pci_prepare_to_sleep(pdev);
6529  } else {
6530  pci_wake_from_d3(pdev, false);
6532  }
6533 
6534  return 0;
6535 }
6536 
6537 static int igb_runtime_resume(struct device *dev)
6538 {
6539  return igb_resume(dev);
6540 }
6541 #endif /* CONFIG_PM_RUNTIME */
6542 #endif
6543 
6544 static void igb_shutdown(struct pci_dev *pdev)
6545 {
6546  bool wake;
6547 
6548  __igb_shutdown(pdev, &wake, 0);
6549 
6550  if (system_state == SYSTEM_POWER_OFF) {
6551  pci_wake_from_d3(pdev, wake);
6553  }
6554 }
6555 
6556 #ifdef CONFIG_NET_POLL_CONTROLLER
6557 /*
6558  * Polling 'interrupt' - used by things like netconsole to send skbs
6559  * without having to re-enable interrupts. It's not called while
6560  * the interrupt routine is executing.
6561  */
6562 static void igb_netpoll(struct net_device *netdev)
6563 {
6564  struct igb_adapter *adapter = netdev_priv(netdev);
6565  struct e1000_hw *hw = &adapter->hw;
6566  struct igb_q_vector *q_vector;
6567  int i;
6568 
6569  for (i = 0; i < adapter->num_q_vectors; i++) {
6570  q_vector = adapter->q_vector[i];
6571  if (adapter->msix_entries)
6572  wr32(E1000_EIMC, q_vector->eims_value);
6573  else
6574  igb_irq_disable(adapter);
6575  napi_schedule(&q_vector->napi);
6576  }
6577 }
6578 #endif /* CONFIG_NET_POLL_CONTROLLER */
6579 
6588 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
6590 {
6591  struct net_device *netdev = pci_get_drvdata(pdev);
6592  struct igb_adapter *adapter = netdev_priv(netdev);
6593 
6594  netif_device_detach(netdev);
6595 
6596  if (state == pci_channel_io_perm_failure)
6598 
6599  if (netif_running(netdev))
6600  igb_down(adapter);
6601  pci_disable_device(pdev);
6602 
6603  /* Request a slot slot reset. */
6605 }
6606 
6614 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
6615 {
6616  struct net_device *netdev = pci_get_drvdata(pdev);
6617  struct igb_adapter *adapter = netdev_priv(netdev);
6618  struct e1000_hw *hw = &adapter->hw;
6620  int err;
6621 
6622  if (pci_enable_device_mem(pdev)) {
6623  dev_err(&pdev->dev,
6624  "Cannot re-enable PCI device after reset.\n");
6625  result = PCI_ERS_RESULT_DISCONNECT;
6626  } else {
6627  pci_set_master(pdev);
6628  pci_restore_state(pdev);
6629  pci_save_state(pdev);
6630 
6631  pci_enable_wake(pdev, PCI_D3hot, 0);
6632  pci_enable_wake(pdev, PCI_D3cold, 0);
6633 
6634  igb_reset(adapter);
6635  wr32(E1000_WUS, ~0);
6636  result = PCI_ERS_RESULT_RECOVERED;
6637  }
6638 
6640  if (err) {
6641  dev_err(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status "
6642  "failed 0x%0x\n", err);
6643  /* non-fatal, continue */
6644  }
6645 
6646  return result;
6647 }
6648 
6657 static void igb_io_resume(struct pci_dev *pdev)
6658 {
6659  struct net_device *netdev = pci_get_drvdata(pdev);
6660  struct igb_adapter *adapter = netdev_priv(netdev);
6661 
6662  if (netif_running(netdev)) {
6663  if (igb_up(adapter)) {
6664  dev_err(&pdev->dev, "igb_up failed after reset\n");
6665  return;
6666  }
6667  }
6668 
6669  netif_device_attach(netdev);
6670 
6671  /* let the f/w know that the h/w is now under the control of the
6672  * driver. */
6673  igb_get_hw_control(adapter);
6674 }
6675 
6676 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
6677  u8 qsel)
6678 {
6679  u32 rar_low, rar_high;
6680  struct e1000_hw *hw = &adapter->hw;
6681 
6682  /* HW expects these in little endian so we reverse the byte order
6683  * from network order (big endian) to little endian
6684  */
6685  rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
6686  ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
6687  rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
6688 
6689  /* Indicate to hardware the Address is Valid. */
6690  rar_high |= E1000_RAH_AV;
6691 
6692  if (hw->mac.type == e1000_82575)
6693  rar_high |= E1000_RAH_POOL_1 * qsel;
6694  else
6695  rar_high |= E1000_RAH_POOL_1 << qsel;
6696 
6697  wr32(E1000_RAL(index), rar_low);
6698  wrfl();
6699  wr32(E1000_RAH(index), rar_high);
6700  wrfl();
6701 }
6702 
6703 static int igb_set_vf_mac(struct igb_adapter *adapter,
6704  int vf, unsigned char *mac_addr)
6705 {
6706  struct e1000_hw *hw = &adapter->hw;
6707  /* VF MAC addresses start at end of receive addresses and moves
6708  * torwards the first, as a result a collision should not be possible */
6709  int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6710 
6711  memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
6712 
6713  igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
6714 
6715  return 0;
6716 }
6717 
6718 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
6719 {
6720  struct igb_adapter *adapter = netdev_priv(netdev);
6721  if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
6722  return -EINVAL;
6723  adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
6724  dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
6725  dev_info(&adapter->pdev->dev, "Reload the VF driver to make this"
6726  " change effective.");
6727  if (test_bit(__IGB_DOWN, &adapter->state)) {
6728  dev_warn(&adapter->pdev->dev, "The VF MAC address has been set,"
6729  " but the PF device is not up.\n");
6730  dev_warn(&adapter->pdev->dev, "Bring the PF device up before"
6731  " attempting to use the VF device.\n");
6732  }
6733  return igb_set_vf_mac(adapter, vf, mac);
6734 }
6735 
6736 static int igb_link_mbps(int internal_link_speed)
6737 {
6738  switch (internal_link_speed) {
6739  case SPEED_100:
6740  return 100;
6741  case SPEED_1000:
6742  return 1000;
6743  default:
6744  return 0;
6745  }
6746 }
6747 
6748 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
6749  int link_speed)
6750 {
6751  int rf_dec, rf_int;
6752  u32 bcnrc_val;
6753 
6754  if (tx_rate != 0) {
6755  /* Calculate the rate factor values to set */
6756  rf_int = link_speed / tx_rate;
6757  rf_dec = (link_speed - (rf_int * tx_rate));
6758  rf_dec = (rf_dec * (1<<E1000_RTTBCNRC_RF_INT_SHIFT)) / tx_rate;
6759 
6760  bcnrc_val = E1000_RTTBCNRC_RS_ENA;
6761  bcnrc_val |= ((rf_int<<E1000_RTTBCNRC_RF_INT_SHIFT) &
6763  bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
6764  } else {
6765  bcnrc_val = 0;
6766  }
6767 
6768  wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
6769  /*
6770  * Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
6771  * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
6772  */
6773  wr32(E1000_RTTBCNRM, 0x14);
6774  wr32(E1000_RTTBCNRC, bcnrc_val);
6775 }
6776 
6777 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
6778 {
6779  int actual_link_speed, i;
6780  bool reset_rate = false;
6781 
6782  /* VF TX rate limit was not set or not supported */
6783  if ((adapter->vf_rate_link_speed == 0) ||
6784  (adapter->hw.mac.type != e1000_82576))
6785  return;
6786 
6787  actual_link_speed = igb_link_mbps(adapter->link_speed);
6788  if (actual_link_speed != adapter->vf_rate_link_speed) {
6789  reset_rate = true;
6790  adapter->vf_rate_link_speed = 0;
6791  dev_info(&adapter->pdev->dev,
6792  "Link speed has been changed. VF Transmit "
6793  "rate is disabled\n");
6794  }
6795 
6796  for (i = 0; i < adapter->vfs_allocated_count; i++) {
6797  if (reset_rate)
6798  adapter->vf_data[i].tx_rate = 0;
6799 
6800  igb_set_vf_rate_limit(&adapter->hw, i,
6801  adapter->vf_data[i].tx_rate,
6802  actual_link_speed);
6803  }
6804 }
6805 
6806 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
6807 {
6808  struct igb_adapter *adapter = netdev_priv(netdev);
6809  struct e1000_hw *hw = &adapter->hw;
6810  int actual_link_speed;
6811 
6812  if (hw->mac.type != e1000_82576)
6813  return -EOPNOTSUPP;
6814 
6815  actual_link_speed = igb_link_mbps(adapter->link_speed);
6816  if ((vf >= adapter->vfs_allocated_count) ||
6817  (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
6818  (tx_rate < 0) || (tx_rate > actual_link_speed))
6819  return -EINVAL;
6820 
6821  adapter->vf_rate_link_speed = actual_link_speed;
6822  adapter->vf_data[vf].tx_rate = (u16)tx_rate;
6823  igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
6824 
6825  return 0;
6826 }
6827 
6828 static int igb_ndo_get_vf_config(struct net_device *netdev,
6829  int vf, struct ifla_vf_info *ivi)
6830 {
6831  struct igb_adapter *adapter = netdev_priv(netdev);
6832  if (vf >= adapter->vfs_allocated_count)
6833  return -EINVAL;
6834  ivi->vf = vf;
6835  memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
6836  ivi->tx_rate = adapter->vf_data[vf].tx_rate;
6837  ivi->vlan = adapter->vf_data[vf].pf_vlan;
6838  ivi->qos = adapter->vf_data[vf].pf_qos;
6839  return 0;
6840 }
6841 
6842 static void igb_vmm_control(struct igb_adapter *adapter)
6843 {
6844  struct e1000_hw *hw = &adapter->hw;
6845  u32 reg;
6846 
6847  switch (hw->mac.type) {
6848  case e1000_82575:
6849  case e1000_i210:
6850  case e1000_i211:
6851  default:
6852  /* replication is not supported for 82575 */
6853  return;
6854  case e1000_82576:
6855  /* notify HW that the MAC is adding vlan tags */
6856  reg = rd32(E1000_DTXCTL);
6857  reg |= E1000_DTXCTL_VLAN_ADDED;
6858  wr32(E1000_DTXCTL, reg);
6859  case e1000_82580:
6860  /* enable replication vlan tag stripping */
6861  reg = rd32(E1000_RPLOLR);
6862  reg |= E1000_RPLOLR_STRVLAN;
6863  wr32(E1000_RPLOLR, reg);
6864  case e1000_i350:
6865  /* none of the above registers are supported by i350 */
6866  break;
6867  }
6868 
6869  if (adapter->vfs_allocated_count) {
6870  igb_vmdq_set_loopback_pf(hw, true);
6871  igb_vmdq_set_replication_pf(hw, true);
6873  adapter->vfs_allocated_count);
6874  } else {
6875  igb_vmdq_set_loopback_pf(hw, false);
6876  igb_vmdq_set_replication_pf(hw, false);
6877  }
6878 }
6879 
6880 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
6881 {
6882  struct e1000_hw *hw = &adapter->hw;
6883  u32 dmac_thr;
6884  u16 hwm;
6885 
6886  if (hw->mac.type > e1000_82580) {
6887  if (adapter->flags & IGB_FLAG_DMAC) {
6888  u32 reg;
6889 
6890  /* force threshold to 0. */
6891  wr32(E1000_DMCTXTH, 0);
6892 
6893  /*
6894  * DMA Coalescing high water mark needs to be greater
6895  * than the Rx threshold. Set hwm to PBA - max frame
6896  * size in 16B units, capping it at PBA - 6KB.
6897  */
6898  hwm = 64 * pba - adapter->max_frame_size / 16;
6899  if (hwm < 64 * (pba - 6))
6900  hwm = 64 * (pba - 6);
6901  reg = rd32(E1000_FCRTC);
6902  reg &= ~E1000_FCRTC_RTH_COAL_MASK;
6903  reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
6905  wr32(E1000_FCRTC, reg);
6906 
6907  /*
6908  * Set the DMA Coalescing Rx threshold to PBA - 2 * max
6909  * frame size, capping it at PBA - 10KB.
6910  */
6911  dmac_thr = pba - adapter->max_frame_size / 512;
6912  if (dmac_thr < pba - 10)
6913  dmac_thr = pba - 10;
6914  reg = rd32(E1000_DMACR);
6915  reg &= ~E1000_DMACR_DMACTHR_MASK;
6916  reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
6918 
6919  /* transition to L0x or L1 if available..*/
6921 
6922  /* watchdog timer= +-1000 usec in 32usec intervals */
6923  reg |= (1000 >> 5);
6924 
6925  /* Disable BMC-to-OS Watchdog Enable */
6926  reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
6927  wr32(E1000_DMACR, reg);
6928 
6929  /*
6930  * no lower threshold to disable
6931  * coalescing(smart fifb)-UTRESH=0
6932  */
6933  wr32(E1000_DMCRTRH, 0);
6934 
6935  reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
6936 
6937  wr32(E1000_DMCTLX, reg);
6938 
6939  /*
6940  * free space in tx packet buffer to wake from
6941  * DMA coal
6942  */
6944  (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
6945 
6946  /*
6947  * make low power state decision controlled
6948  * by DMA coal
6949  */
6950  reg = rd32(E1000_PCIEMISC);
6952  wr32(E1000_PCIEMISC, reg);
6953  } /* endif adapter->dmac is not disabled */
6954  } else if (hw->mac.type == e1000_82580) {
6955  u32 reg = rd32(E1000_PCIEMISC);
6957  wr32(E1000_DMACR, 0);
6958  }
6959 }
6960 
6961 /* igb_main.c */